Skip to main content
Log in

Existence of Exact Penalty for Constrained Optimization Problems in Metric Spaces

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

In this paper we use the penalty approach in order to study constrained minimization problems in a complete metric space with locally Lipschitzian mixed constraints. A penalty function is said to have the exact penalty property if there is a penalty coefficient for which a solution of an unconstrained penalized problem is a solution of the corresponding constrained problem. In this paper we establish sufficient conditions for the exact penalty property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boukari, D., Fiacco, A.V.: Survey of penalty, exact-penalty and multiplier methods from 1968 to 1993. Optimization 32, 301–334 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burke, J.V.: Calmness and exact penalization. SIAM J. Control Optim. 29, 493–497 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burke, J.V.: An exact penalization viewpoint of constrained optimization. SIAM J. Control Optim. 29, 968–998 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Clarke, F.H.: Optimization and Nonsmooth Analysis. Willey Interscience, New York (1983)

    MATH  Google Scholar 

  5. Di Pillo, G., Grippo, L.: Exact penalty functions in constrained optimization. SIAM J. Control Optim. 27, 1333–1360 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eremin, I.I.: The penalty method in convex programming. Soviet Math. Dokl. 8, 459–462 (1966)

    Google Scholar 

  8. Han, S.-P., Mangasarian, O.L.: Exact penalty function in nonlinear programming. Math. Programming 17, 251–269 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin Heidelberg New York (1993)

    Google Scholar 

  10. Ioffe, A.D.: Necessary and sufficient conditions for a local minimum. I. A reduction theorem and first order conditions. SIAM J. Control Optim. 17, 245–250 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Luenberger, D.G.: Control problems with kinks. IEEE Trans. Automat. Control 15, 570–575 (1970)

    Article  MathSciNet  Google Scholar 

  12. Mordukhovich, B.S.: Maximum principle in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech. 40, 960–969 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mordukhovich, B.S.: Penalty functions and necessary conditions for the extremum in nonsmooth and nonconvex optimization problems. Uspekhi Mat. Nauk 36, 215–216 (1981)

    MATH  MathSciNet  Google Scholar 

  14. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications. Springer, Berlin Heidelberg New York (2006)

    Google Scholar 

  15. Palais, R.: Lusternik–Schnirelman theory of Banach manifolds. Topology 5, 115–132 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rockafellar, R.T.: Penalty methods and augmented Lagrangians in nonlinear programming. Fifth Conference on Optimization Techniques (Rome, 1973), Part I. Lecture Notes in Comput. Sci., vol. 3, 418–425. Springer, Berlin Heidelberg New York (1973)

    Google Scholar 

  17. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin Heidelberg New York (1998)

    MATH  Google Scholar 

  18. Zangwill, W.I.: Nonlinear programming via penalty functions. Management Sci. 13, 344–358 (1967)

    Article  MathSciNet  Google Scholar 

  19. Zaslavski, A.J.: On critical points of Lipschitz functions on smooth manifolds. Siberian Math. J. 22, 63–68 (1981)

    Article  Google Scholar 

  20. Zaslavski, A.J.: A sufficient condition for exact penalty in constrained optimization. SIAM J. Optim. 16, 250–262 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Zaslavski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaslavski, A.J. Existence of Exact Penalty for Constrained Optimization Problems in Metric Spaces. Set-Valued Anal 15, 223–237 (2007). https://doi.org/10.1007/s11228-006-0024-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-006-0024-6

Key words

Mathematics Subject Classifications (2000)

Navigation