Skip to main content
Log in

Generalized Differential Inclusions in Banach Spaces

  • Original Paper
  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

We study a new type of solutions to differential inclusions in Banach spaces, which we call directional solutions. The idea is based on the observation that for a differentiable function \(u\) and a closed set \(V\)

$$u\prime {\left( t \right)} \in V\,{\text{iff}}\,{\mathop {\lim }\limits_{h \to 0} }d{\left( {\frac{{u{\left( {t + h} \right)} - u{\left( t \right)}}}{h},V} \right)} = 0.$$

The above formula, which ‘makes sense’ also for non-differentiable functions, allows us to investigate nowhere differentiable solutions to differential inclusions. Thus we say that \(u\) is a directional solution to \(u\prime = F{\left( {t,u} \right)}\) if

$${\mathop {\lim }\limits_{h \to 0} }d{\left( {\frac{{u{\left( {t + h} \right)} - u{\left( t \right)}}}{h},F{\left( {t,u{\left( t \right)}} \right)}} \right)} = 0\,{\text{for}}\,{\text{all}}\,t.$$

We show that directional solutions have better properties than classical ones, in particular a limit of a convergent sequence of approximate solutions is an exact solution. We also prove that \(u\) is a directional solution to \(u\prime \in F{\left( {t,u} \right)}\) if

$$u{\left( {t_{2} } \right)} \in u{\left( {t_{1} } \right)} + {\int_{t_{1} }^{t_{2} } {F{\left( {t,u{\left( t \right)}} \right)}{\rm d}t\,{\text{for}}\,{\text{all}}\,t_{1} ,t_{2} .} }$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.-P., Cellina, A.: Differential inclusions. Springer-Verlag, Berlin Heidelberg New York (1984)

    MATH  Google Scholar 

  2. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston Basel Berlin (1990)

    MATH  Google Scholar 

  3. Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis 1. Amer. Math. Colloq. Pub. 48, (2000)

  4. Bressan, A.: On the cauchy problem for nonlinear hyperbolic systems. S.I.S.S.A preprint 1–12 (1998)

  5. Bressan, A.: Hyperbolic systes of conservation laws: the one dimensional cauchy problem. Oxford University Press (2000)

  6. Deimling, K.: Multivalued differential equations. De Gruyter, Berlin and New York, 260 pp (1992)

  7. Dunford, N., Schwartz, J.T.: Linear operators, part I: general theory, pure and applied Mathematics. Vol. VII, Interscience, New York (1958)

    Google Scholar 

  8. Marchaud, H.: Sur les champs de demi-cônes et les équations différentielles du premier ordre. Bull Sci Math 62, 1–38 (1938)

    MathSciNet  Google Scholar 

  9. Monteiro Marques, M.D.P.: Differential inclusions in nonsmooth mechanical problems: Schock and Dry Friction, volume 9 of progress in nonlinear differential equations and their applications. Birkhäuser Verlag, Basel, Boston, Berlin (1993)

    Google Scholar 

  10. Moreau, J.-J.: Bounded variation in time. In: Topics in Nonsmooth Mechanics, 1–74, Birkhäuser, Basel-Boston, Massachusetts (1988)

  11. Painlevé, P.: Sur le lois du frottement de glissement. C. R. Acad. Sci. Paris 121, 112–115 (1895)

    Google Scholar 

  12. Painlevé, P.: Sur le lois du frottement de glissement. C. R. Acad. Sci. Paris 141, 546–552 (1905)

    Google Scholar 

  13. Panasyuk, A.I., Panasyuk, V. I.: On one equation generated by a differential inclusion. Mat. Zametki 37, 429–437 (1980) (in Russian)

    MathSciNet  Google Scholar 

  14. Panasyuk, A.I.: Properties of solutions of a quasidifferential approximation equation and an equation of an integral funnel. Differ. Uravn. 28/9, 1537–1544 (1992) (in Russian)

    MathSciNet  Google Scholar 

  15. Panasyuk, A.I.: Quasidifferential equations in complete metric space under conditions of the Carathéodory type. I. Differ. Uravn. 31/6, 962–972 (1995) (in Russian)

    MathSciNet  Google Scholar 

  16. Panasyuk, A.I.: Quasidifferential equations in complete metric space under conditions of the Carathéodory type. II. Differ. Uravn. 31/8, 1361–1369 (1995) (in Russian)

    MathSciNet  Google Scholar 

  17. Panasyuk, A.I.: Properties of solutions of a quasidifferential equation in a complete metric space and of an equation of an integral funnel. Differ Uravn 31/9, 1488–1492 (1995) (in Russian)

    MathSciNet  Google Scholar 

  18. Pianigiani, G.: Differential inclusions. In: Cellina, A. (ed.) The Baire category method. Methods of Nonconvex Analysis, Lecture Notes in Math., 1446, 104–136. Springer, Berlin Heidelberg New York (1989)

    Google Scholar 

  19. Stewart, D.E.: Formulating measure differential inclusions in infinite dimensions. Set-Valued Analysis 8/3, 273–293 (2000)

    Article  Google Scholar 

  20. Stewart, D.E.: Reformulations of measure differential inclusions and their closed graph property. J Differ Equ 175, 108–129 (2001)

    Article  MATH  Google Scholar 

  21. Tolstonogov, A.: Differential Inclusions in a Banach space. Kluwer, Dordrecht Boston London, (2000)

    MATH  Google Scholar 

  22. Ważewski, T.: Systèmes de commande et équations au contingent. Bull. Acad. Pol. Sci. 9, 151–155 (1961)

    Google Scholar 

  23. Ważewski, T.: Sur une condition équivalente à l'équation au contingent. Bull. Acad. Pol. Sci. 9, 865–867 (1961)

    Google Scholar 

  24. Zaremba, S.C.: Sur les équations au paratingent. Bull. Sci. Math. 60, 139–160 (1936)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Tabor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabor, J. Generalized Differential Inclusions in Banach Spaces. Set-Valued Anal 14, 121–148 (2006). https://doi.org/10.1007/s11228-006-0015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-006-0015-7

Keywords

Mathematics Subject Classifications (2000)

Navigation