Skip to main content
Log in

Minimizing Sequences in Class-Qualified Deposit Problems

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

We study multidimensional control problems involving first-order partial differential equations. To ensure the existence of sufficiently regular multipliers (from the space \({C^{\ast}}\)) in the first-order necessary optimality conditions, some restrictions of the feasible domain have to be added. In particular, we investigate ‘class-qualified’ problems where the weak derivatives of \(x\) can be represented within a Baire function class. In the present paper, we prove conditions under which the original and the modified problems possess the same minimal values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrejewa, J. A. and Klötzler, R.: Zur analytischen Lösung geometrischer Optimierungsaufgaben mittels Dualität bei Steuerungsproblemen. Teil I, Z. Angew. Math. Mech. 64 (1984), 35–44.

    Article  MathSciNet  Google Scholar 

  2. Andrejewa, J. A. and Klötzler, R.: Zur analytischen Lösung geometrischer Optimierungsaufgaben mittels Dualität bei Steuerungsproblemen. II, Z. Angew. Math. Mech. 64 (1984), 147–153.

    Article  MathSciNet  Google Scholar 

  3. Aubin, J.-P. and Frankowska, H.: Set-Valued Analysis, Birkhäuser; Boston, 1990.

    MATH  Google Scholar 

  4. Barnes, I. and Zhang, K.: Instability of the eikonal equation and Shape from Shading, M2AN Math. Model. Numer. Anal. 34 (2000), 127–138.

    Article  MATH  MathSciNet  Google Scholar 

  5. Carathéodory, C.: Vorlesungen über reelle Funktionen, Chelsea; New York 1968\(^3\).

    Google Scholar 

  6. Carlier, G. and Lachand-Robert, T.: Régularité des solutions d'un problème variationnel sous contrainte de convexitée, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 79–83.

    MATH  MathSciNet  Google Scholar 

  7. Cesari, L.: Optimization with partial differential equations in Dieudonné–Rashevsky form and conjugate problems, Arch. Ration. Mech. Anal. 33 (1969), 339–357.

    Article  MATH  MathSciNet  Google Scholar 

  8. Chambolle, A.: A uniqueness result in the theory of stereo vision: coupling Shape from Shading and binocular information allows unambiguous depth reconstruction, Ann. Inst. H. Poincaré – Anal. Non linéaire 11 (1994), 1–16.

    MATH  MathSciNet  Google Scholar 

  9. Dunford, N. and Schwartz, J. T.: Linear Operators. Part I: General Theory, Wiley-Interscience; New York, 1988.

    MATH  Google Scholar 

  10. Elstrodt, J.: Maß- und Integrationstheorie, Springer, Berlin, 1996.

    MATH  Google Scholar 

  11. Evans, L. C. and Gariepy, R. F.: Measure Theory and Fine Properties of Functions, CRC, Boca Raton, 1992.

    MATH  Google Scholar 

  12. Gamkrelidze, R. V.: Principles of Optimal Control Theory, Plenum, New York, 1978.

    MATH  Google Scholar 

  13. Ginsburg, B. and Ioffe, A. D.: The maximum principle in optimal control of systems governed by semilinear equations, in Mordukhovich, B. S.; Sussmann, H. J. (eds), Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, IMA Vol. Math. Appl. 78, Springer, Berlin, 1996, pp. 81–110.

    Google Scholar 

  14. Hinterberger, W., Scherzer, O., Schnörr, C. and Weickert, J.: Analysis of optical flow models in the framework of the calculus of variations, Num. Funct. Anal. Optim. 23 (2002), 69–89.

    Article  MATH  Google Scholar 

  15. Hüseinov, F.: Approximation of Lipschitz functions by infinitely differentiable functions with derivatives in a convex body, Turkish J. Math. 16 (1992), 250–256.

    MATH  Google Scholar 

  16. Ioffe, A. D. and Tichomirov, V. M.: Theorie der Extremalaufgaben, VEB Deutscher Verlag der Wissenschaften, Berlin 1979.

    MATH  Google Scholar 

  17. Klötzler, R.: On Pontryagin's maximum principle for multiple integrals, Beiträge Analysis 8 (1976), 67–75.

    Google Scholar 

  18. Klötzler, R.: Globale Optimierung in der Steuerungstheorie, Z. Angew. Math. Mech. 63 5 (1983) , T 305–T 312.

    Google Scholar 

  19. Klötzler, R. and Pickenhain, S.: Pontryagin's maximum principle for multidimensional control problems, in R. Bulirsch, A. Miele, J. Stoer and K. H. Well (eds), Optimal Control. Calculus of Variations, Optimal Control Theory and Numerical Methods, Internat. Ser. Numer. Math. 111, Birkhäuser, Basel, 1993, pp. 21–30.

    Google Scholar 

  20. Kraut, H. and Pickenhain, S.: Erweiterung von mehrdimensionalen Steuerungsproblemen und Dualität, Optimization 21 (1990), 387–397.

    Article  MATH  MathSciNet  Google Scholar 

  21. Lachand-Robert, T. and Peletier, M. A.: Minimisation de fonctionnelles dans un ensemble de fonctions convexes, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 851–855.

    MATH  MathSciNet  Google Scholar 

  22. Lachand-Robert, T. and Peletier, M. A.: An example of non-convex minimization and an application to Newton's problem of the body of least resistance, Ann. Inst. H. Poincaré – Anal. Non linéaire 18 (2001), 179–198.

    Article  MATH  MathSciNet  Google Scholar 

  23. Morrey, C. B.: Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966 (Grundlehren 130).

    MATH  Google Scholar 

  24. Pickenhain, S. and Wagner, M.: Critical points in relaxed deposit problems, in A. Ioffe, S. Reich and I. Shafrir (eds), Calculus of Variations and Optimal Control, Technion 98, Vol. II, (Res. Notes Math. 411), Chapman & Hall/CRC; Boca Raton, 2000, pp. 217–236.

    Google Scholar 

  25. Pickenhain, S. and Wagner, M.: Pontryagin's principle for state-constrained control problems governed by a first-order PDE system, J. Optim. Theory Appl. 107 (2000), 297–330.

    Article  MATH  MathSciNet  Google Scholar 

  26. Pickenhain, S. and Wagner, M.: Piecewise continuous controls in Dieudonné–Rashevsky type problems, J. Optim. Theory Appl. 127 (2005), 145–163.

    Article  MathSciNet  Google Scholar 

  27. Roubiček, T.: Relaxation in Optimization Theory and Variational Calculus, De Gruyter; Berlin, 1997.

    Google Scholar 

  28. Rund, H.: Sufficiency conditions for multiple integral control problems, J. Optim. Theory Appl. 13 (1974), 125–138.

    Article  MATH  MathSciNet  Google Scholar 

  29. Sauer, E.: Schub und Torsion bei elastischen prismatischen Balken, Verlag Wilhelm Ernst & Sohn, Berlin–München, 1980 (Mitteilungen aus dem Institut für Massivbau der TH Darmstadt 29).

  30. Ting, T. W.: Elastic-plastic torsion of convex cylindrical bars, J. Math. Mech. 19 (1969), 531–551.

    MATH  MathSciNet  Google Scholar 

  31. Ting, T. W.: Elastic-plastic torsion problem III, Arch. Ration. Mech. Anal. 34 (1969), 228–244.

    Article  MATH  MathSciNet  Google Scholar 

  32. Wagner, M.: Pontryagin's maximum principle for Dieudonné–Rashevsky type problems involving Lipschitz functions, Optimization 46 (1999), 165–184.

    Article  MATH  MathSciNet  Google Scholar 

  33. Wagner, M.: Some extensions of Hüseinov's \({\mathop{\mathstrut{\mathit C\/}} \nolimits^{\infty}} \)-approximation theorem for Lipschitz functions. Cottbus University of Technology, Preprint M-06/2001.

  34. Wagner, M.: Quasiconvex relaxation of Dieudonné–Rashevsky type problems. In preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pickenhain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickenhain, S., Wagner, M. Minimizing Sequences in Class-Qualified Deposit Problems. Set-Valued Anal 14, 105–120 (2006). https://doi.org/10.1007/s11228-005-0010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-005-0010-4

Mathematics Subject Classifications (2000)

Key words

Navigation