Skip to main content
Log in

Reynold's Transport Theorem for Differential Inclusions

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

The well-known Reynold's Transport Theorem deals with the integral over a time-dependent set (that is evolving along a smooth vector field) and specifies its semiderivative with respect to time. Here reachable sets of differential inclusions are considered instead. Dispensing with any assumptions about the regularity of the compact initial set, we give sufficient conditions on the differential inclusion for the absolute continuity (of the integral) with respect to time and its weak derivative is formulated as a Hausdorff integral over the topological boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N. and Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., Oxford Univ. Press, 2000.

  2. Aubin, J.-P.: Viability Theory, Systems Control Found. Appl., Birkhäuser, Basel, 1991.

  3. Aubin, J.-P. and Cellina, A.: Differential Inclusions, Grundlehren Math. Wiss. 264, Springer, New York, 1984.

  4. Aubin, J.-P. and Frankowska, H.: Set-Valued Analysis, Systems Control Found. Appl., Birkhäuser, Basel, 1990.

  5. Bardi, M. and Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Systems Control Found. Appl., Birkhäuser, Basel, 1997.

  6. Clarke, F. H.: Optimization and Nonsmooth Analysis, Wiley Interscience, New York, 1983.

    MATH  Google Scholar 

  7. Cannarsa, P., Frankowska, H. and Sinestrari, C.: Optimality conditions and synthesis for the minimum time problem, Set-Valued Anal. 8(1–2) (2000), 127–148.

    Article  MATH  MathSciNet  Google Scholar 

  8. Cannarsa, P. and Frankowska, H.: Some characterizations of optimal trajectories in control theory, SIAM J. Control Optim. 29(6) (1991), 1322–1347.

    Article  MATH  MathSciNet  Google Scholar 

  9. Delfour, M. C. and Zolésio, J.-P.: Shapes and Geometries, Analysis, Differential Calculus and Optimization, Adv. Des. Control, SIAM, Philadelphia, 2001.

  10. Evans, L. C. and Gariepy, R. F.: Measure Theory and Fine Properties of Functions, Stud. Adv. Math. CRC, Boca Raton, 1992.

  11. Federer, H.: Geometric Measure Theory, Grundlehren Math. Wiss. 153, Springer, New York, 1969.

  12. Frankowska, H.: Contingent cones to reachable sets of control systems, SIAM J. Control Optim. 27(1) (1989), 170–198.

    Article  MATH  MathSciNet  Google Scholar 

  13. Frankowska, H., Plaskacz, S. and Rzeuchowski, T.: Measurable viability theorems and the Hamilton–Jacobi–Bellman equation, J. Differential Equations 116(2) (1995), 265–305.

    Article  MATH  MathSciNet  Google Scholar 

  14. Gilbarg, D. and Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order, 2nd edn, Grundlehren Math. Wiss. 224, Springer, New York, 1983.

  15. Jarnik, J. and Kurzweil, J.: On conditions on right hand sides of differential relations, Casopis Pest. Mat. 102 (1977), 334–349.

    MathSciNet  Google Scholar 

  16. Lorenz, T.: Set-valued maps for image segmentation, Comput. Vis. Sci. 4(1) (2001), 41–57.

    Article  MATH  MathSciNet  Google Scholar 

  17. Rockafellar, R. T.: Clarke's tangent cones and the boundaries of closed sets in ℝn, Nonlinear Anal. Theor. Meth. Appl. 3 (1979), 145–154.

    Article  MATH  MathSciNet  Google Scholar 

  18. Rockafellar, R. T. and Wets, R.: Variational Analysis, Grundlehren Math. Wiss. 317, Springer, New York, 1998.

  19. Rzeżuchowski, T.: On the set where all the solutions satisfy a differential inclusion, In: Qualitative Theory of Differential Equations, Vol. II, Szeged 1979, Colloq. Math. Soc. János Bolyai 30 (1981), 903–913.

    Google Scholar 

  20. Vinter, R.: Optimal Control, Systems Control Found. Appl., Birkhäuser, Basel, 2000.

  21. Wolenski, P. R. and Zhuang, Y.: Proximal analysis and the minimal time function, SIAM J. Control Optim. 36(3) (1998), 1048–1072.

    Article  MATH  MathSciNet  Google Scholar 

  22. Ziemer, W. P.: Weakly Differentiable Functions, Springer, New York, 1989.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lorenz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenz, T. Reynold's Transport Theorem for Differential Inclusions. Set-Valued Anal 14, 209–247 (2006). https://doi.org/10.1007/s11228-005-0006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-005-0006-0

Key words

Navigation