Set-Valued Analysis

, Volume 13, Issue 4, pp 381–404 | Cite as

Attractors of Weakly Asymptotically Compact Set-Valued Dynamical Systems

Article

Abstract

The existence of weak attractors is established for set-valued dynamical systems which are weakly asymptotically compact and weakly dissipative. Here weak properties mean with respect to at least one trajectory for each initial value. A condition ensuring the uniqueness of such weak attractors is given. The results are illustrated with an application involving a partial differential inclusion in bounded and unbounded domains.

Keywords

set-valued dynamical system weak attraction weak asymptotic compactness attractor differential inclusion unbounded domain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrieta, J. M., Cholewa, J., Dlotko, T. and Rodriguez-Bernal, A.: Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains, Nonlinear Anal. 56 (2004), 515–554. CrossRefGoogle Scholar
  2. 2.
    Aubin, J. P. and Frankowska, H.: Set-Valued Analysis, Birkhäuser, Basel, 1990. Google Scholar
  3. 3.
    Aubin, J. P. and Cellina, A.: Differential Inclusions, Set-Valued Maps and Viability Theory, Springer, Berlin, 1984. Google Scholar
  4. 4.
    Barbashin, E. A.: On the theory of generalized dynamical systems, Uch. Zap. Moskov. Gos. Univ. 135 (1949), 110–133. Google Scholar
  5. 5.
    Ball, J. M.: Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equations, In: Mechanics: From Theory to Computation, Springer, New York, 2000, pp. 447–474. Google Scholar
  6. 6.
    Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei, Bucharest, 1976. Google Scholar
  7. 7.
    Brezis, H.: Analyse Fonctionnelle, Masson, Paris, 1983. Google Scholar
  8. 8.
    Caraballo, T., Kloeden, P. E. and Marín-Rubio, P.: Weak pullback attractors of set-valued processes, J. Math. Anal. Appl. 288 (2003), 692–707. CrossRefGoogle Scholar
  9. 9.
    Caraballo, T., Marín-Rubio, P. and Robinson, J.: A comparison between two theories for multivalued semiflows and their asymptotic behaviour, Set-Valued Anal. 11 (2003), 297–322. CrossRefGoogle Scholar
  10. 10.
    Hale, J. K.: Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr. 25, Amer. Math. Soc., Providence, 1988. Google Scholar
  11. 11.
    Himmelberg, C. J.: Measurable relations, Fund. Math. 87 (1975), 53–72. Google Scholar
  12. 12.
    Kapustyan, A. V. and Valero, J.: Attractors of multivalued semiflows generated by differential inclusions and their approximations, Abstr. Appl. Anal. 5 (2000), 33–46. Google Scholar
  13. 13.
    Kloeden, P. E.: General control systems without backwards extension, In: E. Roxin, P. Liu and R. Sternberg (eds), Differential Games and Control Theory, Marcel Dekker, New York, 1974, pp. 49–58. Google Scholar
  14. 14.
    Kloeden, P. E.: General control systems, In: W. A. Coppel (ed.), Mathematical Control Theory, Lecture Notes in Math. 680, Springer, New York, 1978, pp. 119–138. Google Scholar
  15. 15.
    Kloeden, P. E.: Pullback attractors in nonautonomous difference equations, J. Difference Eqns. Appl. 6 (2000), 33–52. Google Scholar
  16. 16.
    Kloeden, P. E. and Marín-Rubio, P.: Weak pullback attractors in nonautonomous difference inclusions, J. Difference Eqns. Appl. 9 (2003), 489–502. CrossRefGoogle Scholar
  17. 17.
    Melnik, V. S. and Valero, J.: On attractors of multivalued semiflows and differential inclusions, Set-Valued Anal. 6 (1998), 83–111. CrossRefGoogle Scholar
  18. 18.
    Papageorgiou, N. S.: Evolution inclusions involving a difference term of subdifferentials and applications, Indian J. Pure Appl. Math. 28 (1997), 575–610. Google Scholar
  19. 19.
    Papageorgiou, N. S. and Papalini, F.: On the structure of the solution set of evolution inclusions with time-dependent subdifferentials, Acta Math. Univ. Comenian. 65 (1996), 33–51. Google Scholar
  20. 20.
    Pilyugin, S. Y.: Attracting sets and systems without uniqueness, Mat. Zametki 42 (1987), 703–711; 763; English translation: Math. Notes 42 (1987), 887–891. Google Scholar
  21. 21.
    Prizzi, M.: A remark on reaction-diffusion equations in unbounded domains, Discrete Continuous Dynam. Systems 9 (2004), 281–286. Google Scholar
  22. 22.
    Rodríguez-Bernal, A. and Wang, B.: Attractors for partly dissipative reaction-diffusion systems in ℝn, J. Math. Anal. Appl. 252 (2000), 790–803. CrossRefGoogle Scholar
  23. 23.
    Roxin, E. O.: Stability in general control systems, J. Differential Equations 1 (1965), 115–150. CrossRefGoogle Scholar
  24. 24.
    Roxin, E. O.: On generalized dynamical systems defined by contingent equations, J. Differential Equations 1 (1965), 188–205. CrossRefGoogle Scholar
  25. 25.
    Smirnov, G. V.: Introduction to the Theory of Differential Inclusions, Amer. Math. Soc., Providence, 2002. Google Scholar
  26. 26.
    Szegö, G. P. and Treccani, G.: Semigruppi di Trasformazioni Multivoche, Lecture Notes in Math. 101, Springer, New York, 1969. Google Scholar
  27. 27.
    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988. Google Scholar
  28. 28.
    Tolstonogov, A. A. and Umansky, Y. I.: On solutions of evolution inclusions 2, Sibirsk. Mat. Zh. 33(4) (1992), 163–173. Google Scholar
  29. 29.
    Valero, J.: Finite and infinite-dimensional attractors of multivalued reaction-diffusion equations, Acta Math. Hungar. 88 (2000), 239–258. CrossRefGoogle Scholar
  30. 30.
    Valero, J.: Attractors of parabolic equations without uniqueness, J. Dynamics Differential Equations 13 (2001), 711–744. CrossRefGoogle Scholar
  31. 31.
    Veliov, V. M.: Stability like properties of differential inclusions, Set-Valued Anal. 5 (1997), 73–88. CrossRefGoogle Scholar
  32. 32.
    Wang, B.: Attractors for reaction-diffusion equations in unbounded domains, Physica D 128 (1999), 41–52. CrossRefGoogle Scholar
  33. 33.
    Yosida, K.: Functional Analysis, Springer, Berlin–Heidelberg, 1965. Google Scholar
  34. 34.
    Zelik, V.: Attractors of reaction-diffusion systems in unbounded domains and their spatial homogenization, Comm. Pure Appl. Math. 56 (2003), 584–637. CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.FB MathematikJohann Wolfgang Goethe UniversitätFrankfurt am MainGermany
  2. 2.Departamento de Estadística y Matemática AplicadaUniversidad Miguel HernándezElcheSpain

Personalised recommendations