Skip to main content
Log in

CF-lines: a fusing contour features optimization method for line segment detector

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Aiming at the problem that the existing line segment detectors will detect overdense meaningless textures, this paper proposes a fusing contour features optimization method for line segment detector, called CF-Lines. We define a new line segment attribute, called "line segment associate contour(LAC)" attribute, which includes the contour features, the length and the angle of line segment. After using existing algorithms to detect contours and line segments, CF-Lines calculates the LAC of all line segments. When the LAC is greater than the threshold and passes the quantitative verification, the line segment is removed as overdense meaningless texture. Using the YorkUrban and Wireframe datasets, the CF-Lines is tested and compared with original detectors. Experimental results show that CF-Lines performs better than the original detectors in average precision, F-score, average length of line segments and average number of line segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Grinias I, Panagiotakis C, Tziritas G (2016) Mrf-based segmentation and unsupervised classification for building and road detection in peri-urban areas of high -resolution satellite images. ISPRS J Photogram Remote Sens 122:145–166. https://doi.org/10.1016/j.isprsjprs.2016.10.010

    Article  Google Scholar 

  2. Xu Y, Oh S, Hoogs A (2013) A minimum error vanishing point detection approach for uncalibrated monocular images of man-made environments. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp 1376–1383, https://doi.org/10.1109/CVPR.2013.181

  3. Yu Z, Zheng J, Lian D, et al (2019) Single-image piece-wise planar 3d reconstruction via associative embedding. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 1029–1037, https://doi.org/10.1109/CVPR.2019.00112

  4. De Brabandere B, Neven D, Van Gool L (2017) Semantic instance segmentation for autonomous driving. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 478–480, https://doi.org/10.1109/CVPRW.2017.66

  5. Mukhopadhyay P, Chaudhuri BB (2015) A survey of hough transform. Pattern Recogn 48(3):993–1010. https://doi.org/10.1016/j.patcog.2014.08.027

    Article  Google Scholar 

  6. Liu Y, Xie Z, Liu H (2019) Lb-lsd: a length-based line segment detector for real-time applications. Pattern Recogn Lett 128:247–254. https://doi.org/10.1016/j.patrec.2019.09.011

    Article  Google Scholar 

  7. Galamhos C, Matas J, Kittler J (1999) Progressive probabilistic hough transform for line detection. In: Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), pp 554–560 Vol. 1, https://doi.org/10.1109/CVPR.1999.786993

  8. Fernandes LAF, Oliveira MM (2008) Real-time line detection through an improved hough transform voting scheme. Pattern Recogn 41(1):299–314. https://doi.org/10.1016/j.patcog.2007.04.003

    Article  Google Scholar 

  9. Burns JB, Hanson AR, Riseman EM (1986) Extracting straight lines. IEEE Trans Pattern Anal Mach Intell PAMI 8(4):425–455. https://doi.org/10.1109/TPAMI.1986.4767808

    Article  Google Scholar 

  10. Grompone von Gioi R, Jakubowicz J, Morel JM et al (2010) Lsd: a fast line segment detector with a false detection control. IEEE Trans Pattern Anal Mach Intell 32(4):722–732. https://doi.org/10.1109/TPAMI.2008.300

    Article  Google Scholar 

  11. Topal C, Akinlar C (2012) Edge drawing: a combined real-time edge and segment detector. J Vis Commun Image Rep 23(6):862–872. https://doi.org/10.1016/j.jvcir.2012.05.004

    Article  Google Scholar 

  12. Cho NG, Yuille A, Lee SW (2018) A novel linelet-based representation for line segment detection. IEEE Trans Pattern Anal Mach Intell 40(5):1195–1208. https://doi.org/10.1109/TPAMI.2017.2703841

    Article  Google Scholar 

  13. Almazàn EJ, Tal R, Qian Y, et al (2017) Mcmlsd: A dynamic programming approach to line segment detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 5854–5862, https://doi.org/10.1109/CVPR.2017.620

  14. Suárez I, Muñoz E, Buenaposada JM, et al (2018) Fsg: A statistical approach to line detection via fast segments grouping. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 97–102, https://doi.org/10.1109/IROS.2018.8594434

  15. Liu C, Abergel R, Gousseau Y et al (2020) Lsdsar, a markovian a contrario framework for line segment detection in sar images. Pattern Recogn 98:107034. https://doi.org/10.1016/j.patcog.2019.107034

    Article  Google Scholar 

  16. Zhang X, Hu C, Liu H et al (2023) A line segment detector for space target images robust to complex illumination. Aerospace 10(2):195. https://doi.org/10.3390/aerospace10020195

    Article  Google Scholar 

  17. Xue N, Bai S, Wang F, et al (2019) Learning attraction field representation for robust line segment detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Proceedings, pp 1595–603, https://doi.org/10.1109/CVPR.2019.00169

  18. Huang S, Qin F, Xiong P, et al (2020) Tp-lsd: tri-points based line segment detector. In: Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12372), pp 770–85, https://doi.org/10.1007/978-3-030-58583-9_46

  19. Pautrat R, Lin JT, Larsson V, et al (2021) Sold2: self-supervised occlusion-aware line description and detection. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021, pp 11363–11373, https://doi.org/10.1109/CVPR46437.2021.01121

  20. Xu Y, Xu W, Cheung D, et al (2021) Line segment detection using transformers without edges. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021, pp 4255–4264, https://doi.org/10.1109/CVPR46437.2021.00424

  21. Gong XY, Su H, Xu D et al (2018) An overview of contour detection approaches. Int J Autom Comput 15:656–672. https://doi.org/10.1007/s11633-018-1117-z

    Article  Google Scholar 

  22. Grigorescu C, Petkov N, Westenberg M (2003) Contour detection based on nonclassical receptive field inhibition. IEEE Trans Image Process 12(7):729–739. https://doi.org/10.1109/TIP.2003.814250

    Article  Google Scholar 

  23. Grigorescu C, Petkov N, Westenberg M (2004) Contour and boundary detection improved by surround suppression of texture edges. Image Vision Comput 22(8):609–622. https://doi.org/10.1016/j.imavis.2003.12.004

    Article  Google Scholar 

  24. Petkov N, Westenberg M (2003) Suppression of contour perception by band-limited noise and its relation to nonclassical receptive field inhibition. Biol Cybern 88(3):236–246. https://doi.org/10.1007/s00422-002-0378-2

    Article  Google Scholar 

  25. Cox I, Rehg J, Hingorani S (1993) A bayesian multiple-hypothesis approach to edge grouping and contour segmentation. Int J Comput Vision 11(1):5–24. https://doi.org/10.1007/BF01420590

    Article  Google Scholar 

  26. Elder J, Zucker S (1996) Computing contour closure. In: Computer Vision - ECCV ‘96. 4th Eurpean Conference on Computer Proceedings, pp 399–412, https://doi.org/10.1007/BFb0015553

  27. Geisler W, Perry J, Super B et al (2001) Edge co-occurrence in natural images predicts contour grouping performance. Vision Res 41(6):711–724. https://doi.org/10.1016/S0042-6989(00)00277-7

    Article  Google Scholar 

  28. Arbelaez P, Maire M, Fowlkes C, et al (2009) From contours to regions: An empirical evaluation. In: CVPR: 2009 IEEE Conference on Computer Vision and Pattern Recognition, VOLS 1-4, p 2294-2301, https://doi.org/10.1109/CVPR.2009.5206707

  29. Ming Y, Li H, He X (2015) Winding number constrained contour detection. IEEE Trans Image Process 24(1):68–79. https://doi.org/10.1109/TIP.2014.2372636

    Article  MathSciNet  Google Scholar 

  30. Shen W, Wang X, Wang Y, et al (2015) Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3982–3991, https://doi.org/10.1109/CVPR.2015.7299024

  31. Bertasius G, Shi J, Torresani L (2015) Deepedge: a multi-scale bifurcated deep network for top-down contour detection deepedge: A multi-scale bifurcated deep network for top-down contour detection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 4380–4389, https://doi.org/10.1109/CVPR.2015.7299067

  32. Hariharan B, Arbelaez P, Bourdev L, et al (2011) Semantic contours from inverse detectors. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp 991–998, https://doi.org/10.1109/ICCV.2011.6126343

  33. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell PAMI 8(6):679–698. https://doi.org/10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  34. Luo K, Deng J, Cai W, et al (2022) Line segment extraction algorithm optimization based on shi-tomasi corner detector. J Sounth China Normal Univ (Natural Science Edition) 54(1):113–121

  35. Denis P, Elder JH, Estrada FJ (2008) Efficient edge-based methods for estimating manhattan frames in urban imagery. Computer Vision - ECCV 2008. PT II, Proceedings, pp 197–210

  36. Huang K, Wang Y, Zhou Z, et al (2018) Learning to parse wireframes in images of man-made environments. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 626–635, https://doi.org/10.1109/CVPR.2018.00072

  37. Wang J, Wang C, Huang T (2013) Efficient image contour detection using edge prior. In: 2013 IEEE International Conference on Multimedia and Expo (ICME 2013)

  38. Elliott DL (1993) A better activation function for artificial neural networks. Technical Research Report

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NO.U1911401).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Runsheng Liu and Wencong Cai; Methodology: Runsheng Liu, Wencong Cai and Junyang Zhang; Formal analysis and investigation: Xiaoling Wu and Lilin Yang; Writing - original draft preparation: Runsheng Liu; Writing - review and editing: Wencong Cai, Junyang Zhang and Lilin Yang; Funding acquisition: Kaiqing Luo; Resources: Kaiqing Luo; Supervision: Kaiqing Luo and Xiaoling Wu.

Corresponding author

Correspondence to Kaiqing Luo.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Cai, W., Zhang, J. et al. CF-lines: a fusing contour features optimization method for line segment detector. J Supercomput 80, 3644–3662 (2024). https://doi.org/10.1007/s11227-023-05615-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-023-05615-3

Keywords

Navigation