Raca V, Mehofer E (2020) Clustercl: comprehensive support for multi-kernel data-parallel applications in heterogeneous asymmetric clusters. J. Supercomput. 76(12):9976–10008. https://doi.org/10.1007/s11227-020-03234-w
Article
Google Scholar
Raca V, Mehofer E (2015)Device-sensitive framework for handling heterogeneous asymmetric clusters efficiently. In: 27th International Symposium on Computer Architecture and High Performance Computing, SBAC-PAD 2015, Florianópolis, Brazil, October 17–21, 2015, pp 178–185. https://doi.org/10.1109/SBAC-PAD.2015.15
Raca V, Mehofer E, Hudec M (2016) Optimal time and energy efficient work distributions in heterogeneous systems. In: 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP), Heraklion, Greece, pp 440– 447. https://doi.org/10.1109/PDP.2016.68
Liu Q, Luk W (2012) Heterogeneous systems for energy efficient scientific computing. In: 8th International Symposium, ARC 2012, Hong Kong, China, March 19-23, 2012. Proceedings, vol 7199, pp 64–75. https://doi.org/10.1007/978-3-642-28365-9_6
Bertsimas D, Weismantel R (2005) Optimization over integers. Athena Scientific, US
Google Scholar
Makhorin A (2012) GLPK - GNU Project - Free Software Foundation (FSF). https://www.gnu.org/software/glpk/#TOCintroduction. Accessed 14 May 2022
Hochbaum DS, Shmoys DB (1987) Using dual approximation algorithms for scheduling problems theoretical and practical results. J ACM 34(1):144–162. https://doi.org/10.1145/7531.7535
MathSciNet
Article
Google Scholar
Kleinberg JM, Tardos É (2006) Algorithm design. Addison-Wesley, US
Google Scholar
Branke J, Deb K, Miettinen K, Slowinski R (2008) Multiobjective optimization: interactive and evolutionary approaches. Springer, Germany
Book
Google Scholar
Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26(6):369–395. https://doi.org/10.1007/s00158-003-0368-6
MathSciNet
Article
MATH
Google Scholar
Deb K (2014) Multiobjective optimization. In: Burke EK, Kendall G (eds) Search methodologies: introductory tutorials in optimization and decision support techniques. Springer, Boston, pp 403–449. https://doi.org/10.1007/978-1-4614-6940-7_15
Chapter
Google Scholar
Shmoys DB, Tardos E (1993)Scheduling unrelated machines with costs. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’93, pp. 448– 454. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. http:dl-acm-org.uaccess.univie.ac.at/citation.cfm?id=313559.313851
Freeh VW, Lowenthal DK, Pan F, Kappiah N, Springer R, Rountree BL, Femal ME (2007) Analyzing the energy-time trade-off in high-performance computing applications. IEEE Trans Parallel Distrib Syst 18(6):835–848
Article
Google Scholar
He Y, Liu F, Cao H-j, Li C-b (2005) A bi-objective model for job-shop scheduling problem to minimize both energy consumption and makespan. J Central South Univ Technol 12(2):167–171
Article
Google Scholar
Durillo JJ, Nae V, Prodan R (2013) Multi-objective workflow scheduling: an analysis of the energy efficiency and makespan tradeoff. In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, pp 203– 210. https://doi.org/10.1109/CCGrid.2013.62
Hajiamini S, Shirazi B, Crandall A, Ghasemzadeh H (2020) A dynamic programming framework for dvfs-based energy-efficiency in multicore systems. IEEE Trans Sustain Comput 5(1):1–12
Article
Google Scholar
D’Amico M, Gonzalez, JC (2021) Energy hardware and workload aware job scheduling towards interconnected hpc environments. IEEE Trans Parallel Distrib Syst 1. https://doi.org/10.1109/TPDS.2021.3090334
Kumar N, Vidyarthi DP (2021) A novel energy-efficient scheduling model for multi-core systems. Clust Comput 24(2):643–666. https://doi.org/10.1007/s10586-020-03143-w
Article
Google Scholar
Pineau J-F, Robert Y, Vivien F (2011) Energy-aware scheduling of bag of tasks applications on master worker platforms. Concurrency Comput Practice Exp 23(2):145–157
Article
Google Scholar
Li D, Wu J (2012) Energy-aware scheduling for frame-based tasks on heterogeneous multiprocessor platforms. In: 2012 41st International Conference on Parallel Processing, pp 430– 439. https://doi.org/10.1109/ICPP.2012.26
Tang X, Fu Z (2020) Cpu-gpu utilization aware energy-efficient scheduling algorithm on heterogeneous computing systems. IEEE Access 8:58948–58958
Article
Google Scholar
Li Y, Liu Y, Qian D (2009) A heuristic energy-aware scheduling algorithm for heterogeneous clusters. In: 2009 15th International Conference on Parallel and Distributed Systems, pp 407– 413. https://doi.org/10.1109/ICPADS.2009.33
Wang G, Ren X (2010) Power-efficient work distribution method for cpu-gpu heterogeneous system. In: International Symposium on Parallel and Distributed Processing with Applications, pp 122– 129 ( 2010). https://doi.org/10.1109/ISPA.2010.22
Cabrera A, Acosta A, Almeida F, Blanco V (2020) A dynamic multi objective approach for dynamic load balancing in heterogeneous systems. IEEE Trans Parallel Distrib Syst 31(10):2421–2434. https://doi.org/10.1109/TPDS.2020.2989869
Article
Google Scholar
Balaprakash P, Tiwari A, Wild SM (2014) Multi objective optimization of HPC kernels for performance, power, and energy. In: Jarvis SA, Wright SA, Hammond SD (eds) High performance computing systems. performance modeling, benchmarking and simulation. Springer International Publishing, Cham, p 239–260. isbn: 978-3-319-10214-6
Chapter
Google Scholar
Friese R, Khemka B, Maciejewski AA, Siegel HJ, Koenig GA, Powers S, Hilton M, Rambharos J, Okonski G, Poole SW (2013) An analysis framework for investigating the trade-offs between system performance and energy consumption in a heterogeneous computing environment. In: 2013 IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum, pp 19–30. https://doi.org/10.1109/IPDPSW.2013.142
Young BD, Apodaca J, Briceño LD, Smith J, Pasricha S, Maciejewski AA, Siegel HJ, Khemka B, Bahirat S, Ramirez A, Zou Y (2013) Deadline and energy constrained dynamic resource allocation in a heterogeneous computing environment. J Supercomput 63(2):326–347. https://doi.org/10.1007/s11227-012-0740-7
Article
Google Scholar
Tarplee KM, Friese R, Maciejewski AA, Siegel HJ, Chong EKP (2016) Energy and makespan tradeoffs in heterogeneous computing systems using efficient linear programming techniques. IEEE Trans Parallel Distrib Syst 27(6):1633–1646. https://doi.org/10.1109/TPDS.2015.2456020
Article
Google Scholar
Li W, Liu X, Cai X, Zhang X (2019) Approximation algorithm for the energy-aware profit maximizing problem in heterogeneous computing systems. J Parall Distrib Comput 124:70–77. https://doi.org/10.1016/j.jpdc.2018.10.013
Article
Google Scholar
Yang P, Wong C, Marchal P, Catthoor F, Desmet D, Verkest D, Lauwereins R (2001) Energy-aware runtime scheduling for embedded-multiprocessor socs. IEEE Des Test Comput 18(5):46–58. https://doi.org/10.1109/54.953271
Article
Google Scholar
Nesmachnow S, Dorronsoro B, Pecero JE, Bouvry P (2013) Energy-aware scheduling on multicore heterogeneous grid computing systems. J Grid Comput 11(4):653–680. https://doi.org/10.1007/s10723-013-9258-3
Article
Google Scholar
Dongarra JJ, Jeannot E, Saule E, Shi Z (2007) Bi-objective scheduling algorithms for optimizing makespan and reliability on heterogeneous systems. In: Proceedings of the Nineteenth Annual ACM Symposium on Parallel Algorithms and Architectures. SPAA ’07, pp. 280–288. ACM, New York, NY, USA (2007). https://doi.org/10.1145/1248377.1248423