Skip to main content

A symbiosis of arithmetic optimizer with slime mould algorithm for improving global optimization and conventional design problem

Abstract

An arithmetic optimizer algorithm (AOA) is hybridized with slime mould algorithm (SMA) to address the issue of less internal memory and slow convergence at local minima which is termed as HAOASMA. Lens opposition-based learning strategy is also integrated with the hybrid algorithm which enhances the population diversity of the hybrid optimizer to accelerate the convergence. The local best (\(P_{{{\text{best}}}} )\) and global best (\(g_{{{\text{best}}}} )\) of SMA initializes the AOA’s search process. The \(P_{{{\text{best}}}}\) obtained from AOA again initializes the SMA to further exploit the search space. In this way, the developed hybrid algorithm utilizes the exploitation and exploration capabilities of SMA and AOA, respectively. The developed HAOASMA has been compared on twenty-three benchmark functions at different dimensions with basic SMA, AOA and six renowned meta-heuristic algorithms. The HAOASMA has also been applied to classical engineering design problems. The performance of HAOASMA is significantly superior compared to basic SMA, AOA and other meta-heuristic algorithms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Gupta S, Deep K, Mirjalili S, Kim JH (2020) A modified sine cosine algorithm with novel transition parameter and mutation operator for global optimization. Expert Syst Appl 2020:113395

    Article  Google Scholar 

  2. 2.

    Talbi E-G (2009) Metaheuristics: from design to implementation, vol 74. John Wiley & Sons

  3. 3.

    Michiels W, Aarts EHL, Korst JHM (2007) Theoretical aspects of local search. Springer, Berlin

    MATH  Google Scholar 

  4. 4.

    Glover F, Laguna M (1989) Tabu search-part I. ORSA J Comput 1(3):190–206

    Article  Google Scholar 

  5. 5.

    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science (80-) 220(4598):671–680

    MathSciNet  Article  Google Scholar 

  6. 6.

    Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. Proc Sixth Int Symp Micro Mach Hum Sci. https://doi.org/10.1109/mhs.1995.494215

    Article  Google Scholar 

  7. 7.

    Goldberg DE (1989) Genetic algorithm in search. Dorling Kindersley Publishing Inc Person Education, London

    Google Scholar 

  8. 8.

    Vashishtha G, Kumar R (2021) An effective health indicator for Pelton wheel using Levy Flight mutated Genetic Algorithm. Meas Sci Technol 32:094003

    Article  Google Scholar 

  9. 9.

    Chauhan S, Singh M, Aggarwal AK (2020) Diversity driven multi-parent evolutionary algorithm with adaptive non-uniform mutation. J Exp Theor Artif Intell 2020:1–32

    Google Scholar 

  10. 10.

    Mirjalili S, Gandomi AH, Zahra S, Saremi S (2017) Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  11. 11.

    Wu J, Nan R, Chen L (2019) Improved salp swarm algorithm based on weight factor and adaptive mutation. J Exp Theor Artif Intell 00(00):1–23. https://doi.org/10.1080/0952813X.2019.1572659

    Article  Google Scholar 

  12. 12.

    Gupta S, Deep K, Asghar A, Moayedi H, Chen H (2019) Harmonized salp chain-built optimization. Eng Comput 1:31. https://doi.org/10.1007/s00366-019-00871-5

    Article  Google Scholar 

  13. 13.

    Faris H, Mirjalili S, Aljarah I, Mafarja M, Heidari AA (2020) Salp swarm algorithm: theory, literature review, and application in extreme learning machines. Stud Comput Intell 811:185–199. https://doi.org/10.1007/978-3-030-12127-3_11

    Article  Google Scholar 

  14. 14.

    Abualigah L, Diabat A (2021) Advances in sine cosine algorithm: a comprehensive survey, vol 54. Springer, Berlin

    Google Scholar 

  15. 15.

    Abualigah L (2021) Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Comput Appl 33(7):2949–2972. https://doi.org/10.1007/s00521-020-05107-y

    Article  Google Scholar 

  16. 16.

    Del Ser J (2014) The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. Sci World J 2014:1–15

    Article  Google Scholar 

  17. 17.

    Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713. https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  18. 18.

    Xiong G, Shi D, Duan X (2014) Enhancing the performance of biogeography-based optimization using polyphyletic migration operator and orthogonal learning. Comput Oper Res 41(1):125–139. https://doi.org/10.1016/j.cor.2013.07.021

    Article  MATH  Google Scholar 

  19. 19.

    Zhang X, Kang Q, Cheng J, Wang X (2018) A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer. Appl Soft Comput 67:197–214. https://doi.org/10.1016/j.asoc.2018.02.049

    Article  Google Scholar 

  20. 20.

    Hassanzadeh HR, Rouhani M (2010) A multi-objective gravitational search algorithm. In: Proceedings of the 2nd International Conference on Computational Intelligence and Communication Networks, CICSyN 2010, vol 1. pp 7–12. https://doi.org/10.1109/CICSyN.2010.32.

  21. 21.

    Pan Q, Gao L, Li X, Gao K (2017) Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times. Appl Math Comput 303:89–112. https://doi.org/10.1016/j.amc.2017.01.004

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  23. 23.

    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  24. 24.

    Mirjalili S, Saremi S, Mohammad S (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119. https://doi.org/10.1016/j.eswa.2015.10.039

    Article  Google Scholar 

  25. 25.

    Wang X, Zhao H, Han T, Zhou H, Li C (2019) A grey wolf optimizer using Gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem. Appl Soft Comput 78:240–260. https://doi.org/10.1016/j.asoc.2019.02.037

    Article  Google Scholar 

  26. 26.

    Rodríguez L et al (2017) A fuzzy hierarchical operator in the grey wolf optimizer algorithm. Appl Soft Comput J 57:315–328. https://doi.org/10.1016/j.asoc.2017.03.048

    Article  Google Scholar 

  27. 27.

    Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  28. 28.

    Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  29. 29.

    Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  30. 30.

    Yang X-S (2020) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-inspired Comput 2(2):1–12

    Google Scholar 

  31. 31.

    Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol Comput 44:148–175. https://doi.org/10.1016/j.swevo.2018.02.013

    Article  Google Scholar 

  32. 32.

    Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119. https://doi.org/10.1016/j.eswa.2015.10.039

    Article  Google Scholar 

  33. 33.

    Jadhav AN, Gomathi N (2018) WGC: hybridization of exponential grey wolf optimizer with whale optimization for data clustering. Alexandria Eng J 57(3):1569–1584. https://doi.org/10.1016/j.aej.2017.04.013

    Article  Google Scholar 

  34. 34.

    Kohli M, Arora S (2018) Chaotic grey wolf optimization algorithm for constrained optimization problems. J Comput Des Eng 5(4):458–472. https://doi.org/10.1016/j.jcde.2017.02.005

    Article  Google Scholar 

  35. 35.

    Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76(2):60–68

    Article  Google Scholar 

  36. 36.

    Zeng B, Dong Y (2016) An improved harmony search based energy-efficient routing algorithm for wireless sensor networks. Appl Soft Comput J 41:135–147. https://doi.org/10.1016/j.asoc.2015.12.028

    Article  Google Scholar 

  37. 37.

    Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  38. 38.

    Zou F, Wang L, Hei X, Chen D, Yang D (2014) Teaching-learning-based optimization with dynamic group strategy for global optimization. Inf Sci (Ny) 273:112–131. https://doi.org/10.1016/j.ins.2014.03.038

    Article  Google Scholar 

  39. 39.

    Fan Q, Chen Z, Zhang W, Fang X (2020) ESSAWOA: enhanced whale optimization algorithm integrated with salp swarm algorithm for global optimization. Eng Comput. https://doi.org/10.1007/s00366-020-01189-3

    Article  Google Scholar 

  40. 40.

    Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Future Gener Comput Syst 111:300–323

    Article  Google Scholar 

  41. 41.

    Ewees AA et al (2021) Improved slime mould algorithm based on firefly algorithm for feature selection: a case study on QSAR model. Eng Comput. https://doi.org/10.1007/s00366-021-01342-6

    Article  Google Scholar 

  42. 42.

    Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2020) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609. https://doi.org/10.1016/j.cma.2020.113609

    MathSciNet  Article  MATH  Google Scholar 

  43. 43.

    Wolpert DH, William GM (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1.1:67–82

    Article  Google Scholar 

  44. 44.

    Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  45. 45.

    Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Soft 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  46. 46.

    Long W, Xu S (2017) A novel grey wolf optimizer for global optimization problems. In: Proceedings of the 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2016, vol 1, pp 1266–1270. https://doi.org/10.1109/IMCEC.2016.7867415

  47. 47.

    Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  48. 48.

    Mirjalili S, Mohammad S, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  49. 49.

    Wang Z, Luo Q, Zhou Y (2020) Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems, no. 0123456789. Springer, London

    Google Scholar 

  50. 50.

    Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci (Ny) 178(15):3043–3074. https://doi.org/10.1016/j.ins.2008.02.014

    Article  Google Scholar 

  51. 51.

    Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10:629–640. https://doi.org/10.1016/j.asoc.2009.08.031

    Article  Google Scholar 

  52. 52.

    Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  53. 53.

    Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput J 13(5):2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  54. 54.

    Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Govind Vashishtha.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Vashishtha, G. & Kumar, A. A symbiosis of arithmetic optimizer with slime mould algorithm for improving global optimization and conventional design problem. J Supercomput (2021). https://doi.org/10.1007/s11227-021-04105-8

Download citation

Keywords

  • Arithmetic optimization algorithm
  • Slime mould algorithm
  • Lens opposition-based learning
  • Global optimization
  • Hybridization