Skip to main content

Deep learning in the information service system of agricultural Internet of Things for innovation enterprise


To discuss the application of Internet of Things (IoT) in the agriculture, an agricultural product price prediction model is constructed based on the improved Elman neural network (ENN) of deep learning. Simulation experiment of pest prediction is carried out based on MATLAB, and then the agricultural IoT information service system is combined with the improved ENN prediction model to predict and analyze agricultural product prices. The results show that the agricultural product price prediction model based on the improved ENN has high accuracy, which reaches 0.9241. Through this agricultural product price prediction model, the agricultural IoT information service system can predict the price trend of agricultural products better, and it can also predict the shortcomings in the production and sales of agricultural products, so that corresponding management and control measures can be realized. This work can provide an important reference for the application of deep learning methods in agricultural IoT.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Zulfiqar F, Navarro M, Ashraf M, Akram NA, Munné-Bosch S (2019) Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Sci 289:110270

    Article  Google Scholar 

  2. 2.

    Rosenheim JA, Gratton C (2017) Ecoinformatics (big data) for agricultural entomology: pitfalls, progress, and promise. Annu Rev Entomol 62:399–417

    Article  Google Scholar 

  3. 3.

    Halewood M, Chiurugwi T, Sackville Hamilton R, Kurtz B, Marden E, Welch E, Michiels F, Mozafari J, Sabran M, Patron N, Kersey P, Bastow R, Dorius S, Dias S, McCouch S, Powell W (2018) Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution. New Phytol 217(4):1407–1419

    Article  Google Scholar 

  4. 4.

    Scott NR, Chen H, Cui H (2018) Nanotechnology applications and implications of agrochemicals toward sustainable agriculture and food systems. J Agric Food Chem 66(26):6451–6456

    Article  Google Scholar 

  5. 5.

    García-Sancho M, Myelnikov D (2019) Between mice and sheep: Biotechnology, agricultural science and animal models in late-twentieth century Edinburgh. Stud Hist Philos Biol Biomed Sci 75:24–33

    Article  Google Scholar 

  6. 6.

    Mulatu WB, Bedasa MF, Terefa GK (2020) Prediction of wheat rust diseases using data mining application. Open Access Library J 07(09):1

    Google Scholar 

  7. 7.

    Rahaman MM, Ahsan MA, Chen M (2019) Data-mining techniques for image-based plant phenotypic traits identification and classification. Sci Rep 9(1):19526

    Article  Google Scholar 

  8. 8.

    White BJ, Amrine DE, Larson RL (2018) Big data analytics and precision animal agriculture symposium: data to decisions. J Anim Sci 96(4):1531–1539

    Article  Google Scholar 

  9. 9.

    Khan AF, Anandharaj G (2021) an improved class of hash based key management mechanism with combined solution for single hop and multi hop nodes in IOT. Egypt Inf J 22(2):119–124

    Google Scholar 

  10. 10.

    Jain PK, Saravanan V, Pamula R (2021) A Hybrid CNN-LSTM: a deep learning approach for consumer sentiment analysis using qualitative user-generated contents. Trans Asian Low-Resource Lang Inf Process 20(5):1–15

    Article  Google Scholar 

  11. 11.

    Jain PK, Pamula R (2021) Content-based airline recommendation prediction using machine learning techniques. Mach Learn Algorithms Ind Appl. pp. 185–194

  12. 12.

    Feroz Khan AB (2021) The embedded framework for securing the Internet of Things. J Eng Res.

    Article  MATH  Google Scholar 

  13. 13.

    Khan AF, Anandharaj G (2021) Multi-layer security approach for DDoS detection in Internet of Things. Int J Intell Unmanned Syst 9(3):178–191

    Article  Google Scholar 

  14. 14.

    Shi X, An X, Zhao Q, Liu H, Xia L, Sun X, Guo Y (2019) State-of-the-art internet of things in protected agriculture. Sensors 19(8):1833

    Article  Google Scholar 

  15. 15.

    Awan KA, Ud Din I, Almogren A, Almajed H (2020) AgriTrust-a trust management approach for smart agriculture in cloud-based internet of agriculture things. Sensors 20(21):6174

    Article  Google Scholar 

  16. 16.

    Monteleone S, Moraes EA, Tondato de Faria B, Aquino Junior PT, Maia RF, Neto AT, Toscano A (2020) Exploring the adoption of precision agriculture for irrigation in the context of agriculture 4.0: the key role of internet of things. Sensors 20(24):7091

    Article  Google Scholar 

  17. 17.

    Romeo L, Petitti A, Marani R, Milella A (2020) Internet of robotic things in smart domains: applications and challenges. Sensors 20(12):3355

    Article  Google Scholar 

  18. 18.

    Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202

    Article  Google Scholar 

  19. 19.

    Kanaya S, Altaf-Ul-Amin M, Kiboi SK, Afendi FM (2017) Big data and network biology 2016. Biomed Res Int 2017:9432460

    Article  Google Scholar 

  20. 20.

    Piñeiro C, Morales J, Rodríguez M, Aparicio M, Manzanilla EG, Koketsu Y (2019) Big (pig) data and the internet of the swine things: a new paradigm in the industry. Anim Front 9(2):6–15

    Article  Google Scholar 

  21. 21.

    Arnaud E, Laporte MA, Kim S et al (2020) The ontologies community of practice: a CGIAR initiative for big data in agrifood systems. Patterns 1(7):100105

    Article  Google Scholar 

  22. 22.

    Wei Y, Wang X, Wang R et al (2018) Design and implementation of agricultural production management information system based on WebGIS. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng 34(16):139–147

    Google Scholar 

  23. 23.

    Kitouni I, Benmerzoug D, Lezzar F (2018) Smart agricultural enterprise system based on integration of internet of things and agent technology. J Org End User Comput 30(4):64–82

    Article  Google Scholar 

  24. 24.

    Lvovich IY, Lvovich YE, Preobrazhenskiy AP et al (2019) Modeling of information processing in the Internet of Things at agricultural enterprises. IOP Conf Ser Earth Environ Ence 315:032029

    Article  Google Scholar 

  25. 25.

    Zhang L, Zhou G, Han Y et al (2018) Application of Internet of Things technology and convolutional neural network model in bridge crack detection. IEEE Access 6:39442–39451

    Article  Google Scholar 

  26. 26.

    Cheng Y, Wan S, Choo KKR (2018) Deep belief network for meteorological time series prediction in the internet of things. IEEE Internet Things J 6(3):4369–4376

    Article  Google Scholar 

  27. 27.

    Latif S, Zou Z, Idrees Z et al (2020) A novel attack detection scheme for the industrial internet of things using a lightweight random neural network. IEEE Access 8:89337–89350

    Article  Google Scholar 

  28. 28.

    Mahdavinejad MS, Rezvan M, Barekatain M et al (2018) Machine learning for Internet of Things data analysis: a survey. Digital Commun Netw 4(3):161–175

    Article  Google Scholar 

  29. 29.

    Keswani B, Mohapatra AG, Mohanty A et al (2019) Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms. Neural Comput Appl 31(1):277–292

    Article  Google Scholar 

  30. 30.

    Jianzhai WU, Han S, Liu J (2018) Application progress of agricultural internet of things in major countries. J Phys Conf 1087(3):032013

    Google Scholar 

  31. 31.

    Khanna A, Kaur S (2019) Evolution of Internet of Things (IoT) and its significant impact in the field of precision agriculture. Comput Electron Agric 157:218–231

    Article  Google Scholar 

  32. 32.

    Lin S, Li S, Feng Q et al (2018) Research and implementation of a modern agricultural greenhouse cultivation system based on internet of things. Int J Inf Technol Web Eng 13(1):39–49

    Article  Google Scholar 

  33. 33.

    Fu B (2018) An information discovery scheme for IoS of agricultural services using improved chord-ONS model. Int J Internet Protoc Technol 11(3):129–136

    Article  Google Scholar 

  34. 34.

    Santos UJL, Pessin G, da Costa CA et al (2019) AgriPrediction: a proactive internet of things model to anticipate problems and improve production in agricultural crops. Comput Electron Agric 161:202–213

    Article  Google Scholar 

  35. 35.

    Ullah F, Naeem H, Jabbar S et al (2019) Cyber security threats detection in internet of things using deep learning approach. IEEE access 7:124379–124389

    Article  Google Scholar 

  36. 36.

    Azmoodeh A, Dehghantanha A, Choo KKR (2018) Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning. IEEE Trans Sustain Comput 4(1):88–95

    Article  Google Scholar 

  37. 37.

    Jain PK, Pamula R, Srivastava G (2021) A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews. Comput Sci Rev 41:100413

    Article  Google Scholar 

  38. 38.

    Madhiarasan M, Deepa SN (2018) A novel method to select hidden neurons in ELMAN neural network for wind speed prediction application. Wseas Trans Power Syst 13:13–30

    Google Scholar 

  39. 39.

    Huang Y, Wang H, Liu H et al (2019) Elman neural network optimized by firefly algorithm for forecasting China’s carbon dioxide emissions. Syst Ence Control Eng Open Access J 7(2):8–15

    Google Scholar 

  40. 40.

    Yu C, Li Y, Xiang H et al (2018) Data mining-assisted short-term wind speed forecasting by wavelet packet decomposition and Elman neural network. J Wind Eng Ind Aerodyn 175:136–143

    Article  Google Scholar 

  41. 41.

    Ren G, Cao Y, Wen S et al (2018) A modified elman neural network with a new learning rate scheme. Neurocomputing 286(4):11–18

    Article  Google Scholar 

  42. 42.

    Amellas Y, Djebli Α, Echchelh Α (2020) Levenberg-marquardt training function using on MLP, RNN and elman neural network to optimize hourly forecasting in Tetouan City (Northern Morocco). J Eng Ence Technol Rev 13(1):67–71

    Google Scholar 

  43. 43.

    Sun Y-J (2017) Evaluation of online purchase frequency of fresh agricultural products from the perspective of BP neural network. J Discrete Math Ences Cryptogr 20(6–7):1339–1344

    Article  Google Scholar 

  44. 44.

    Chang TY, Hsieh CJ (2018) Detection and analysis of distributed denial-of-service in internet of things-employing artificial neural network and apache spark platform. Sensors Mater 30(4):857–867

    Google Scholar 

  45. 45.

    Karimi N, Arabhosseini A, Karimi M et al (2018) Web-based monitoring system using Wireless Sensor Networks for traditional vineyards and grape drying buildings. Comput Electron Agric 144:269–283

    Article  Google Scholar 

  46. 46.

    Krishnan S, Lokesh S, Devi MR (2019) An efficient Elman neural network classifier with cloud supported internet of things structure for health monitoring system. Comput Netw 151(5):201–210

    Article  Google Scholar 

  47. 47.

    Alkhasawneh MS, Tay LT (2018) A hybrid intelligent system integrating the cascade forward neural network with Elman neural network. Arab J Sci Eng 43(12):6737–6749

    Article  Google Scholar 

  48. 48.

    Quamer W, Jain PK, Rai A et al (2021) SACNN: self-attentive convolutional neural network model for natural language inference. Trans Asian Low-Resource Lang Inf Process 20(3):1–16

    Article  Google Scholar 

  49. 49.

    Chen M, Liu Q, Huang S, Dang C (2020) Environmental cost control system of manufacturing enterprises using artificial intelligence based on value chain of circular economy. Enterp Inf Syst.

    Article  Google Scholar 

  50. 50.

    Feng B, Sun K, Chen M, Gao T (2020) The impact of core technological capabilities of high-tech industry on sustainable competitive advantage. Sustainability 12:2980

    Article  Google Scholar 

Download references


Project of Zhejiang Higher Education Association: Research on talent Training Mode of “Entrepreneurship and Innovation Education “to Promote New Economic Development (KT2020097). Industry and Education Integration project of the Ministry of Education: “Internet + ” Entrepreneurship Foundation Course Teaching Ability Improvement (201902128018).

Author information



Corresponding author

Correspondence to Xin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wu, Y., Jun, Z. et al. Deep learning in the information service system of agricultural Internet of Things for innovation enterprise. J Supercomput (2021).

Download citation


  • Agricultural IoT information service system
  • Deep learning
  • Elman neural network
  • Prediction model
  • Internet of Things