Skip to main content
Log in

A report on teaching a series of online lectures on quantum computing from CERN

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

A Publisher Correction to this article was published on 02 June 2021

This article has been updated

Abstract

Quantum computing (QC) is one of the most promising new technologies for High Performance Computing. Its potential use in High Energy Physics has lead CERN, one of the top world users of large-scale distributed computing, to start programmes such as the Quantum Technology Initiative (QTI) to further assess and explore the applications of QC. As a part of QTI, CERN offered, in November–December 2020, a free, online series of lectures on quantum computing. In this paper, we report on the experience of designing and delivering these lectures, evaluating them in the broader context of computing education and training. Traditional textbooks and courses on QC usually focus on physical concepts and assume some knowledge of advanced mathematical and physical topics from the student. Our lectures were designed with the objective of reducing the prerequisites to the bare minimum as well as focusing on hands-on, practical aspects of programming quantum computers and not on the mathematical analysis of the algorithms. This also allowed us to include contents that are not usually covered in introductory courses, such as quantum machine learning and quantum annealing. The evaluation of the reception of the lectures shows that participants significantly increased their knowledge, validating the proposed approach not focused on mathematics and physics but on algorithmic and implementation aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Change history

Notes

  1. https://home.cern/science/computing/storage.

  2. Elí-as F. Combarro and José Ranilla.

  3. Elías F. Combarro.

  4. https://cds.cern.ch/.

  5. https://www.youtube.com/channel/UCwXkOx0EuKBR5m_OOiaZRUA.

  6. https://indico.cern.ch/event/970903/.

  7. Elías F. Combarro and José Ranilla.

  8. https://home.cern/news/announcement/computing/online-introductory-lectures-quantum-computing-6-november.

  9. https://www.hpcwire.com/off-the-wire/cern-hosting-online-introductory-lectures-on-quantum-computing-beginning-nov-6/.

  10. https://www.zdnet.com/article/whats-quantum-computing-cerns-new-free-online-course-offers-you-the-answer/.

  11. https://www.techrepublic.com/article/get-your-quantum-computing-questions-answered-during-7-free-online-classes/.

  12. https://twitter.com/CERN/status/1382295115755094016

  13. https://www.youtube.com/channel/UCwXkOx0EuKBR5m_OOiaZRUA.

  14. https://cds.cern.ch/.

  15. https://indico.cern.ch/.

References

  1. Convention for the establishment of a European organization for nuclear research: Paris, 1st July, 1953: as amended. Convention pour l’établissement d’une Organisation européenne pour la Recherche nucléaire. Paris, le 1er juillet 1953 : telle qu’elle a été modifiée. CERN, Geneva (1971). https://cds.cern.ch/record/330625

  2. Aaronson S (2013) Quantum computing since Democritus. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Abraham H, AduOffei, Akhalwaya IY et al (2019) Qiskit: An open-source framework for quantum computing

  4. Aharonov Y, Rohrlich D (2005) Quantum paradoxes. Wiley, London

    Book  Google Scholar 

  5. Arute F, Arya K, Babbush R, Bacon D, Bardin J, Barends R, Biswas R, Boixo S, Brandao F, Buell D, Burkett B, Chen Y, Chen J, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney CM, Giustina M, Graff R, Guerin K, Habegger S, Harrigan M, Hartmann M, Ho A, Hoffmann MR, Huang T, Humble T, Isakov S, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov P, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean JR, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu MY, Ostby E, Petukhov A, Platt J, Quintana C, Rieffel EG, Roushan P, Rubin N, Sank D, Satzinger KJ, Smelyanskiy V, Sung KJ, Trevithick M, Vainsencher A, Villalonga B, White T, Yao ZJ, Yeh P, Zalcman A, Neven H, Martinis J Quantum supremacy using a programmable superconducting processor. Nature 574:505–510. https://www.nature.com/articles/s41586-019-1666-5

  6. Benavent X, de Ves E, Forte A, Botella-Mascarell C, López-Iñesta E, Rueda S, Roger S, Perez J, Portales C, Dura E, Garcia-Costa D, Marzal P (2020) Girls4stem: gender diversity in stem for a sustainable future. Sustainability 12(15):6051

    Article  Google Scholar 

  7. Carrascal G, del Barrio AA, Botella G (2020) First experiences of teaching quantum computing. The J Supercomput pp 1–30

  8. Chan J, Guan W, Sun S, Wang AZ, Wu SL, Zhou C, Livny M, Carminati F, Di Meglio A (2019) Application of quantum machine learning to high energy physics analysis at LHC using IBM quantum computer simulators and IBM quantum computer hardware. pos LeptonPhoton2019, 049. 7 p. https://doi.org/10.22323/1.367.0049. https://cds.cern.ch/record/2712232

  9. Chang SY, Vallecorsa S, Combarro EF, Carminati F (2021) Quantum generative adversarial networks in a continuous-variable architecture to simulate high energy physics detectors. arXiv preprint arXiv:2101.11132

  10. Chang SY, Vallecorsa S, Herbert S, Combarro EF, Carminati F (2020) Quantum generative adversarial networks. In: 4th Inter-experiment machine learning workshop

  11. Clauser JF, Horne MA, Shimony A, Holt RA (1969) Proposed experiment to test local hidden-variable theories. Phys Rev Lett 23:880–884. https://doi.org/10.1103/PhysRevLett.23.880

    Article  MATH  Google Scholar 

  12. Combarro EF, Carminati F, Vallecorsa S, Ranilla J, Rúa IF (2020) On protocols for increasing the uniformity of random bits generated with noisy quantum computers. Submitted

  13. D-wave: leap. https://www.dwavesys.com/take-leap

  14. D-wave: ocean’s library. https://ocean.dwavesys.com

  15. Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. In: Proceedings of the royal society of A 400:97-117, London

  16. Deutsch D, Jozsa R (1992) Rapid solution of problems by quantum computation. Proc R Soc London A Math Phys Eng Sci 439(1907):553–558

    MathSciNet  MATH  Google Scholar 

  17. Dib CZ (1988) Formal, non-formal and informal education: concepts/applicability. In: AIP conference proceedings. American Institute of Physics, USA, vol 173, pp 300–315

  18. Dieks D (1982) Communication by EPR devices. Phys Lett A 92(6):271 – 272. https://doi.org/10.1016/0375-9601(82)90084-6.http://www.sciencedirect.com/science/article/pii/0375960182900846

  19. Eagleman D (2013) Why public dissemination of science matters: a manifesto. J Neurosci 33(30)

  20. Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028

  21. Fernández-Pendás M, Combarro EF, Vallecorsa S, Ranilla J, Rúa IF (2020) A study of the performance of classical minimizers in the quantum approximate optimization algorithm. Submitted

  22. Foster I, Kesselman C (2003) The Grid 2: Blueprint for a new computing infrastructure. The Elsevier series in grid computing. Elsevier Science. https://books.google.fr/books?id=0l5gm6o3vrMC

  23. Fox MF, Zwickl BM, Lewandowski H (2020) Preparing for the quantum revolution: What is the role of higher education? Phys Rev Phys Educ Res 16(2)

  24. Gidney C Quirk. https://algassert.com/quirk

  25. Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual ACM symposium on theory of computing, STOC ’96. ACM, New York, NY, USA, pp 212–219

  26. Grumbling E, Horowitz M (eds) (2019) quantum computing: progress and prospects. The National Academies Press, Washington, DC. https://doi.org/10.17226/25196. https://www.nap.edu/catalog/25196/quantum-computing-progress-and-prospects

  27. Guan W, Perdue G, Pesah A, Schuld M, Terashi K, Vallecorsa S, Vlimant JR (2020) Quantum machine learning in high energy physics. arXiv preprint arXiv:2005.08582

  28. Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM (2019) Supervised learning with quantum-enhanced feature spaces. Nature 567(7747):209–212

    Article  Google Scholar 

  29. IBM: IBM Q Experience. https://quantum-computing.ibm.com/

  30. Laloë F (2019) Do we really understand quantum mechanics? Cambridge University Press. https://doi.org/10.1017/9781108569361

  31. LaRose R (2019) Teaching quantum computing through programming. Medium. https://medium.com/@rlarose_26759/teaching-quantum-computing-through-programming-799283c9769a

  32. Leddy C (2019) Q&A: The talent shortage in quantum computing. MIT News. https://news.mit.edu/2019/mit-william-oliver-qanda-talent-shortage-quantum-computing-0123

  33. Metz C (2018) The next tech talent shortage: quantum computing researchers. The New York Times. https://www.nytimes.com/2018/10/21/technology/quantum-computing-jobs-immigration-visas.html

  34. Mykhailova M, Svore KM (2020) Teaching quantum computing through a practical software-driven approach: Experience report. In: Proceedings of the 51st ACM technical symposium on computer science education, pp 1019–1025

  35. Nielsen MA, Chuang IL (2011) Quantum computation and quantum information: 10th anniversary. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  36. Peruzzo A, McClean J, Shadbolt P, Yung M.H, Zhou X.Q, Love P.J, Aspuru-Guzik A, O’brien J.L (2014) A variational eigenvalue solver on a photonic quantum processor. Nat commun 5:4213

    Article  Google Scholar 

  37. Peterssen G (2020) Quantum technology impact: the necessary workforce for developing quantum software. In: Qanswer, pp 6–22

  38. Piesing M (2020) ’How can we compete with Google?’: the battle to train quantum coders. The Guardian. https://www.theguardian.com/education/2020/jan/15/how-can-we-compete-with-google-the-battle-to-train-quantum-coders

  39. Salehi Ö, Seskir Z, Tepe İ (2020) Teaching quantum computing to an audience beyond physicists: A case study over 22 workshops in 10 countries. arXiv preprint arXiv:2010.13552

  40. Sax LJ, Lehman KJ, Jacobs JA, Kanny MA, Lim G, Monje-Paulson L, Zimmerman HB (2017) Anatomy of an enduring gender gap: the evolution of women’s participation in computer science. J High Educ 88(2):235–273

    Article  Google Scholar 

  41. Seskir ZC, Aydinoglu AU (2019) The landscape of academic literature in quantum information technologies. arXiv preprint arXiv:1910.06969

  42. Sharma KK (2020) Quantum machine learning and its supremacy in high energy physics. Modern Phys Lett A, p 2030024

  43. Shor P (1994) Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of FOCS, pp 124–134

  44. Tappert CC, Frank RI, Barabasi I, Leider AM, Evans D, Westfall L (2019) Experience teaching quantum computing. Assoc Support Comput Users Educ

  45. Wootters WK, Zurek WH (1982) A single quantum cannot be cloned. Nature 299(5886):802–803. https://doi.org/10.1038/299802a0

    Article  MATH  Google Scholar 

  46. Zetie KP, Adams SF, Tocknell RM (2000) How does a Mach-Zehnder interferometer work? Phys Educ 35(1):46–48. https://doi.org/10.1088/0031-9120/35/1/308

    Article  Google Scholar 

  47. Zoufal C, Lucchi A, Woerner S (2019) Quantum generative adversarial networks for learning and loading random distributions. Quant Inf 5(1):1–9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Economy, Industry and Competitiveness from Spain/FEDER under grant TIN2017-87600-P, by the Regional Ministry of the Principality of Asturias under grant FC-GRUPIN-IDI/2018/000226, and by Campus de Excelencia Internacional of the University of Oviedo in collaboration with Banco de Santander, as part of the "ayudas económicas de movilidad de excelencia para docentes e investigadores de la Universidad de Oviedo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ranilla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: During proof correction part of the acknowledgement was missed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Combarro, E.F., Vallecorsa, S., Rodríguez-Muñiz, L.J. et al. A report on teaching a series of online lectures on quantum computing from CERN. J Supercomput 77, 14405–14435 (2021). https://doi.org/10.1007/s11227-021-03847-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-03847-9

Keywords

Navigation