Skip to main content

Advertisement

Log in

Implementation of a high-accuracy phase unwrapping algorithm using parallel-hybrid programming approach for displacement sensing using self-mixing interferometry

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Phase unwrapping is an integral part of multiple algorithms with diverse applications. Detailed phase unwrapping is also necessary for achieving high-accuracy metric sensing using laser feedback-based self-mixing interferometry (SMI). Among SMI specific phase unwrapping approaches, a technique called Improved Phase Unwrapping Method (IPUM) provides the highest accuracy. However, due to its complex, sequential, and compute-intensive nature, this method requires a high-performance computing architecture, capable of scalable parallel processing so that such a high-accuracy algorithm can be used for high-bandwidth sensing applications. In this work, the existing sequential IPUM C program is parallelized by using hybrid OpenMP/MPI (Open Multi-Processing/Message Passing Interface) parallel programming models and tested on Barcelona Supercomputing Center Nord-III Supercomputer. The computational performance of the proposed parallel-hybrid IPUM algorithm is compared with existing IPUM sequential code by executing multi-core and uni-core processor architecture, respectively. While comparing the performance of sequential IPUM with the parallel-hybrid IPUM algorithm on 16 nodes of Nord-III supercomputer, the results show that the parallel-hybrid algorithm gets 345.9x times performance improvement as compared to IPUM’s standard, sequential implementation on a single node system. The results show that the parallel-hybrid version of IPUM gives a scalable performance for different target velocities and a different number of processing cores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gupta R et al (2020) Fingerprint image enhancement and reconstruction using the orientation and phase reconstruction. Inf Sci 530:201–218

    Article  MathSciNet  Google Scholar 

  2. Morishita Yu (2019) A systematic study of synthetic aperture radar interferograms produced from alos-2 data for large global earthquakes from 2014 to 2016. IEEE J Select Topics Appl Earth Observ Remote Sens 12(7):2397–2408

    Article  Google Scholar 

  3. Hanwen Yu, Hyongki Lee, Ting Yuan, Ning Cao (2018) A novel method for deformation estimation based on multibaseline insar phase unwrapping. IEEE Trans Geosci Remote Sens 56(9):5231–5243

    Article  Google Scholar 

  4. Eric Bechler, Julia Stabinska, Hans-Jörg Wittsack (2019) Analysis of different phase unwrapping methods to optimize quantitative susceptibility mapping in the abdomen. Magnet Resonan Med 82(6):2077–2089

    Article  Google Scholar 

  5. Junchao Zhang, Xiaobo Tian, Jianbo Shao, Haibo Luo, Rongguang Liang (2019) Phase unwrapping in optical metrology via denoised and convolutional segmentation networks. Optics Exp 27(10):14903–14912

    Article  Google Scholar 

  6. Wei Yin, Chao Zuo, Shijie Feng, Tianyang Tao, Yan Hu, Lei Huang, Jiawei Ma, Qian Chen (2019) High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping. Optics Lasers Eng 115:21–31

    Article  Google Scholar 

  7. Xia H, Picart P, Montresor S, Guo R, Li JC, Solieman OY, Durand JC, Fages M (2018) Analysis of computerized aided designed and manufactured dental occlusal ceramics with multi-wavelength digital holography. In: Speckle 2018: VII International Conference on Speckle Metrology, Vol. 10834, P. 108341H. International Society for Optics and Photonics

  8. Pijewska E, Gorczynska I, Szkulmowski M (2019) Complex fast phase unwrapping method for doppler oct. In:Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, volume 10867, page 108672G. International Society for Optics and Photonics

  9. Pineda J, Bacca J, Meza J, Romero LA, Arguello H, Marrugo AG (2020) Spud: simultaneous phase unwrapping and denoising algorithm for phase imaging. Appl Opt 59(13):D81–D88

    Article  Google Scholar 

  10. Kam D-U, Kim JH, Lee K (2019) Unwrapped phase correction for robust 3d scanning. Appl Opt 58(14):3676–3684

    Article  Google Scholar 

  11. Taimre T, Nikolic M, Bertling K, Lim YL, Bosch T, Rakic AD (2015) Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing. Adv Opt Photon 7(3):570–631

    Article  Google Scholar 

  12. Bernal OD, Zabit U, Jayat F, Bosch T (2020) Sub-/2 displacement sensor with nanometric precision based on optical feedback interferometry used as a non-uniform event-based sampling system. IEEE Sensors J 20(10):5195–5203

    Article  Google Scholar 

  13. Dongyu Li, Zhenghe Zhang, Zan Huang, Xiaohui Wang, Zihua Zhang, Zhen Huang (2020) Self-mixing interference vibration measurement based on even equivalent wavelength fourier transform algorithm under weak feedback regime. Opt Eng 59(7):074101

    Google Scholar 

  14. Bernal O, Zabit U, Bosch T (2015) Robust method of stabilization of optical feedback regime by using adaptive optics for a self-mixing microinterferometer laser displacement sensor. Select Top Quantum Electron IEEE J 21(4):1–8

    Article  Google Scholar 

  15. Amin S, Zabit U, Bernal OD, Hussain T (2020) High resolution laser self-mixing displacement sensor under large variation in optical feedback and speckle. IEEE Sensors J 20(16):9140–9147

    Article  Google Scholar 

  16. Yongbing Zhang, Yingbin Wei, Chenxi Chen, Wencai Huang, Xiulin Wang, Huizhen Xu (2016) Self-mixing interferometer based on frequency analysis method for accurate refractive index measurement. IEEE Photon J 8(2):1–6

    Google Scholar 

  17. Hagelschuer T, Wienold M, Richter H, Schrottke L, Biermann K, Grahn HT, Hübers H-W (2016) Terahertz gas spectroscopy through self-mixing in a quantum-cascade laser. Appl Phys Lett 109(19):191101

    Article  Google Scholar 

  18. Zabit U, Bernal OD, Bosch T (2013) Design and analysis of an embedded accelerometer coupled self-mixing laser displacement sensor. Sensors J IEEE 13(6):2200–2207

    Article  Google Scholar 

  19. Milesi H, Ventura L, Cavedo F, Norgia M, Dellacà R, Donati S (2019) Optical flow sensor for lung surfactant delivery. In: 2019 IEEE International Conference on BioPhotonics (BioPhotonics), P. 1–2. IEEE

  20. Ehtesham A, Zabit U, Bernal OD, Raja G, Bosch T (2017) Analysis and implementation of a direct phase unwrapping method for displacement measurement using self-mixing interferometry. IEEE Sensors J 17(22):7425–7432

    Article  Google Scholar 

  21. Zabit U, Bernal OD, Amin S, Qureshi MF, Khawaja AH, Bosch T (2019) Spectral processing of self-mixing interferometric signal phase for improved vibration sensing under weak-and moderate-feedback regime. IEEE Sensors J 19(23):11151–11158

    Article  Google Scholar 

  22. Alessandro Magnani, Alessandro Pesatori, Michele Norgia (2012) Self-mixing vibrometer with real-time digital signal elaboration. Appl Opt 51(21):5318–5325

    Article  Google Scholar 

  23. Arriaga AL, Bony F, Bosch T (2016) Real-time algorithm for versatile displacement sensors based on self-mixing interferometry. Sensors J IEEE 16(1):195–202

    Article  Google Scholar 

  24. Merlo S, Donati S (1997) Reconstruction of displacement waveforms with a single-channel laser-diode feedback interferometer. IEEE J Quantum Electron 33(4):527–531

    Article  Google Scholar 

  25. Bes C, Plantier G, Bosch T (2006) Displacement measurements using a self-mixing laser diode under moderate feedback. Instrument Measure IEEE Trans 55(4):1101–1105

    Article  Google Scholar 

  26. Fan Y, Yu Y, Xi J, Chicharo JF (2011) Improving the measurement performance for a self-mixing interferometry-based displacement sensing system. Appl Opt 50(26):5064–5072

    Article  Google Scholar 

  27. Bernal OD, Zabit U, Bosch T (2013) Study of laser feedback phase under self-mixing leading to improved phase unwrapping for vibration sensing. Sensors J IEEE 13(12):4962–4971

    Article  Google Scholar 

  28. Yufeng Tao, Ming Wang, Dongmei Guo (2016) Compound cavity theory of resonant phase modulation in laser self-mixing ultrasonic vibration measurement. Opt Eng 55(7):074107

    Article  Google Scholar 

  29. Lim YL, Kliese R, Bertling K, Tanimizu K, Jacobs PA, Rakić AD (2010) Self-mixing flow sensor using a monolithic vcsel array with parallel readout. Opt Exp 18(11):11720–11727

    Article  Google Scholar 

  30. Zheng Wei, Wencai Huang, Jie Zhang, Xiulin Wang, Huili Zhu, Tong An, Xia Yu (2017) Obtaining scalable fringe precision in self-mixing interference using an even-power fast algorithm. IEEE Photon J 9(4):1–11

    Article  Google Scholar 

  31. Zihua Zhang, Chengwei Li, Zhen Huang (2019) Vibration measurement based on multiple hilbert transform for self-mixing interferometry. Optics Commun 436:192–196

    Article  Google Scholar 

  32. Xiufang Wang, Ye Yuan, Sun Luqing, Bingkun Gao, Peng Chen (2019) Self-mixing interference displacement measurement under very weak feedback regime based on integral reconstruction method. Opt Commun 445:236–240

    Article  Google Scholar 

  33. Zabit U, Bernal OD, Chamorro-Coloma A, Bosch T (2012) Real-time accelerometer coupled self-mixing laser displacement sensor for embedded applications. Sensors, 2012 IEEE, P. 1,4,28–31

  34. Vibhor Kumar Bhardwaj and Surita Maini (2020) Measurement of micro-harmonic vibration from optical feedback interferometry using wavelet trend analysis. Opt Commun 476:126330

    Article  Google Scholar 

  35. Zhang Z, Wang F, Yuan T, Li C (2020) Multiple self-mixing interferometry based on lock-in amplifier analysis for vibration measurement. OPTICAL REVIEW

  36. Zihua Zhang, Chunlei Jiang, Liqun Shen, Chengwei Li, Zhen Huang (2020) Vibration measurement based on the local maximum detection algorithm for laser self-mixing interferometry. IEEE Access 8:63462–63469

    Article  Google Scholar 

  37. Zhao Y, Zhang M, Zhang C, Yang W, Chen T, Perchoux J, Ramírez-Miquet EE, da Costa Moreira R (2019) Micro particle sizing using hilbert transform time domain signal analysis method in self-mixing interferometry. Appl Sci 9(24):5563

    Article  Google Scholar 

  38. Xiufang Wang, Xinmin Song, Renxue Tan, Peng Chen, Bingkun Gao (2019) Micro-vibration measurement based on current modulation and secondary feedback self-mixing interference technology. Opt Rev 26(2):241–246

    Article  Google Scholar 

  39. Dario Melchionni, Alessandro Magnani, Alessandro Pesatori, Michele Norgia (2015) Development of a design tool for closed-loop digital vibrometer. Appl Opt 54(32):9637–9643

    Article  Google Scholar 

  40. Michele Norgia, Dario Melchionni, Alessandro Pesatori (2017) Self-mixing instrument for simultaneous distance and speed measurement. Opt Lasers Eng 99:31–38

    Article  Google Scholar 

  41. Norgia M, Melchionni D, Magnani A, Pesatori A (2014) High-speed self-mixing laser distance sensor. In: 11Th International Conference On Vibration Measurements By Laser And Noncontact Techniques-Aivela 2014: Advances And Applications, volume 1600, pages 422–425. AIP Publishing

  42. Cavedo F, Pesatori A, Norgia M, di Milano P, Solari GE (2015) Laser rangefinder for steel pipes characterization. In: Instrumentation and Measurement Technology Conference (I2MTC), 2015 IEEE International, pages 1387–1390. IEEE

  43. Alessandro Magnani, Alessandro Pesatori, Michele Norgia (2014) Real-time self-mixing interferometer for long distances. IEEE Trans Instrumen Measur 63(7):1804–1809

    Article  Google Scholar 

  44. Tassadaq Hussain, Saqib Amin, Usman Zabit, Bernal Olivier D, Thierry Bosch (2019) A high performance real-time interferometry sensor system architecture. Microprocess Microsyst 64:23–33

    Article  Google Scholar 

  45. Sebastien Ducourtieux, Benoit Poyet (2011) Development of a metrological atomic force microscope with minimized abbe error and differential interferometer-based real-time position control. Measure Sci Technol 22(9):094010

    Article  Google Scholar 

  46. Chen Ji, Wang Xin, Cao Dajiu, Zhou Zhaofeng (2008) Development of high-speed ccd laser displacement sensor. Opt Precis Eng 16(4):616

    Google Scholar 

  47. Wang C (2013) FPGA-based, 4-channel, High-speed phasemeter for heterodyne interferometry (Doctoral dissertation, University of Rochester. Department of Electrical and Computer Engineering)

  48. Yan Zhao, Baofeng Zhang, Lianfu Han (2020) Laser self-mixing interference displacement measurement based on vmd and phase unwrapping. Opt Commun 456:124588

    Article  Google Scholar 

  49. Liping Lu, Lu Hu, Zhen Li, Lirong Qiu, Wencai Huang, Xiulin Wang (2020) High precision self-mixing interferometer based on reflective phase modulation method. IEEE Access 8:204153–204159

    Article  Google Scholar 

  50. Bernal Olivier D, Usman Zabit, Thierry Bosch (2014) Classification of laser self-mixing interferometric signal under moderate feedback. Appl Opt 53(4):702–708

    Article  Google Scholar 

  51. Donati S, Martini G, Tambosso T (2013) Speckle pattern errors in self-mixing interferometry. IEEE J Quantum Electron 49(9):798–806

    Article  Google Scholar 

  52. Siddiqui AA, Zabit U, Bernal OD, Raja G, Bosch T (2017) All analog processing of speckle affected self-mixing interferometric signals. IEEE Sensors J 17(18):5892–5899

    Article  Google Scholar 

  53. Khan ZA, Zabit U, Bernal OD, Hussain T (2020) Adaptive estimation and reduction of noises affecting a self-mixing interferometric laser sensor. IEEE Sensors J 20(17):9806–9815

    Article  Google Scholar 

  54. Bernal O, Seat HC, Zabit U, Surre F, Bosch T (2016) Robust detection of non regular interferometric fringes from a self-mixing displacement sensor using bi-wavelet transform. IEEE Sensors J 16(22):7903

    Article  Google Scholar 

  55. Arriaga AL, Bony F, Bosch T (2014) Speckle-insensitive fringe detection method based on hilbert transform for self-mixing interferometry. Appl Opt 53(30):6954–6962

    Article  Google Scholar 

  56. Imran Ahmed, Usman Zabit, Ahmad Salman (2019) Self-mixing interferometric signal enhancement using generative adversarial network for laser metric sensing applications. IEEE Access 7:174641–174650

    Article  Google Scholar 

  57. Usman M, Zabit U, Alam SA (2020) Multimodal fringe detection for a self-mixing interferometry-based vibration sensor. Appl Opt 59(36):11342–11350

    Article  Google Scholar 

  58. Usman M, Zabit U, Bernal OD, Raja G, Bosch T (2019) Detection of multimodal fringes for self-mixing-based vibration measurement. IEEE Trans Instrumen Measure 69(1):258–267

    Article  Google Scholar 

  59. Zabit U, Bernal OD, Bosch T (2012) Self-mixing sensor for real-time measurement of harmonic and arbitrary displacements. In: Instrumentation and Measurement Technology Conference (I2MTC), 2012 IEEE International, pages 754–758. IEEE

Download references

Acknowledgements

The research leading to these results has received fundings from the Higher Education Commission under TDF03-097. The authors would like to thank the Unal Color of Education Research and Development (UCERD), Private Limited Islamabad, Pakistan Supercomputing Center, and Barcelona Supercomputing Center Spain for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tassadaq Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, T., Amin, S., Zabit, U. et al. Implementation of a high-accuracy phase unwrapping algorithm using parallel-hybrid programming approach for displacement sensing using self-mixing interferometry. J Supercomput 77, 9433–9453 (2021). https://doi.org/10.1007/s11227-021-03634-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-03634-6

Keywords

Navigation