Skip to main content

Traffic classification for efficient load balancing in server cluster using deep learning technique


Extensive use of multimedia services and Internet Data Center applications demand distributed deployment of these applications. It is implemented using edge computing with server clusters. To increase the availability of the services, applications are deployed redundantly in server clusters. In this situation, an efficient server allocation strategy is essential to improve execution fairness in server cluster. Categorizing the incoming traffic at server cluster is desired for the improvement of QoS. The traditional traffic classification models categorize the incoming traffic according to their applications’ type. They are ineffective in selection of suitable server, as they do not consider the characteristics of the server. Hence this paper proposes a classifier to assist the dispatcher to distribute the requests to appropriate server in server cluster. The proposed deep learning classification model based on incoming traffic characteristics and server status is reinforced with extended labelling using correlation based approach. The experimental results of the proposed classifier have shown considerable performance enhancement in terms of classification measures and waiting time of the requests compared to existing machine learning models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Skala K, Davidovic D, Afgan E, Sovic I, Sojat Z (2015) Scalable distributed computing hierarchy: cloud, fog and dew computing. Open J Cloud Comput 2(1):16–24

    Google Scholar 

  2. 2.

    Taleb T, Samdanis K, Mada B, Flinck H, Dutta S, Sabella D (2017) On multi-access edge computing: a survey of the emerging 5g network edge cloud architecture and orchestration. IEEE Commun Surv Tutor 19(3):1657–1681

    Article  Google Scholar 

  3. 3.

    Shahzadi S, Iqbal M, Dagiuklas T, Qayyum ZU (2017) Multi-access edge computing: open issues, challenges and future perspectives. J Cloud Comput 6(1):30

    Article  Google Scholar 

  4. 4.

    Dipti T, Bhawna M (2016) Svm and naive bayes network traffic classification using correlation information. Int J Comput Appl 147(3):1–5

    Google Scholar 

  5. 5.

    Finsterbusch M, Richter C, Rocha E, Muller JA, Hanssgen K (2013) A survey of payload-based traffic classification approaches. IEEE Commun Surv Tutor 16(2):1135–1156

    Article  Google Scholar 

  6. 6.

    Huang NF, Jai GY, Chao HC, Tzang YJ, Chang HY (2013) Application traffic classification at the early stage by characterizing application rounds. Inf Sci 232:130–142

    Article  Google Scholar 

  7. 7.

    Yuan R, Li Z, Guan X, Li X (2010) An svm-based machine learning method for accurate internet traffic classification. Inf Syst Front 12(2):149–156

    Article  Google Scholar 

  8. 8.

    Hao S, Hu J, Liu S, Song T, Guo J, Liu S (2015) Network traffic classification based on improved dag-svm. In: 2015 International Conference on Communications, Management and Telecommunications (ComManTel). IEEE, pp 256–261

  9. 9.

    Zhang J, Chen X, Xiang Y, Zhou W, Jie W (2014) Robust network traffic classification. IEEE/ACM Trans Netw 23(4):1257–1270

    Article  Google Scholar 

  10. 10.

    Finamore A, Mellia M, Meo M, Rossi D (2010) Kiss: stochastic packet inspection classifier for udp traffic. IEEE/ACM Trans Netw 18(5):1505–1515

    Article  Google Scholar 

  11. 11.

    Zhang Q, Ma Y, Wang J, Li X (2014) Udp traffic classification using most distinguished port. In: The 16th Asia-Pacific Network Operations and Management Symposium. IEEE, pp 1–4

  12. 12.

    Shafiq M, Yu X, Laghari AA, Yao L, Karn NK, Abdessamia F (2016) Network traffic classification techniques and comparative analysis using machine learning algorithms. In: 2016 2nd IEEE International Conference on Computer and Communications (ICCC). IEEE, pp 2451–2455

  13. 13.

    Zhao Y, Wei Z, Zou H (2012) Svm based p2p traffic identification method with multiple properties. Int J Eng Manuf 2(4):1

    Google Scholar 

  14. 14.

    Peng L, Yang B, Chen Y (2015) Effective packet number for early stage internet traffic identification. Neurocomputing 156:252–267

    Article  Google Scholar 

  15. 15.

    Hubballi N, Swarnkar M (2018) \( Bitcoding \): network traffic classification through encoded bit level signatures. IEEE/ACM Trans Netw 26(5):2334–2346

    Article  Google Scholar 

  16. 16.

    Xiao X, Li R, Zheng HT, Ye R, KumarSangaiah A, Xia S (2019) Novel dynamic multiple classification system for network traffic. Inf Sci 479:526–541

    Article  Google Scholar 

  17. 17.

    Binfeng W, Jun Z, Zili Z, Lei P, Yang X, Dawen X (2017) Noise-resistant statistical traffic classification. IEEE Trans Big Data.

    Article  Google Scholar 

  18. 18.

    Tongaonkar A, Torres R, Iliofotou M, Keralapura R, Nucci A (2015) Towards self adaptive network traffic classification. Comput Commun 56:35–46

    Article  Google Scholar 

  19. 19.

    Zhang J, Chen C, Xiang Y, Zhou W, Vasilakos AV (2013) An effective network traffic classification method with unknown flow detection. IEEE Trans Netw Serv Manag 10(2):133–147

    Article  Google Scholar 

  20. 20.

    Punitha V, Mala C (2017) Traffic classification for the dispatcher in a server farm based on svm. In: Proceedings of the 2017 International Conference on Intelligent Systems, Metaheuristics and swarm intelligence, pp 93–97

  21. 21.

    Wang Y, Tari Z, HoseinyFarahabady MR, Zomaya AY (2017) Qos-aware resource allocation for stream processing engines using priority channels. In: 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). IEEE, pp 1–9

  22. 22.

    Lyu Q, Lu X (2019) Effective media traffic classification using deep learning. In: Proceedings of the 2019 3rd International Conference on Compute and Data Analysis, pp 139–146

  23. 23.

    Xu J, Wang J, Qi Q, Sun H, He B (2018) Deep neural networks for application awareness in sdn-based network. In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, pp 1–6

  24. 24.

    Lopez-Martin M, Carro B, Sanchez-Esguevillas A, Lloret J (2017) Network traffic classifier with convolutional and recurrent neural networks for internet of things. IEEE Access 5:18042–18050

    Article  Google Scholar 

  25. 25.

    Liu B, Xie Q, Modiano E (2020) Rl-qn: a reinforcement learning framework for optimal control of queueing systems. arXiv preprint arXiv:2011.07401

  26. 26.

    Masuda S, He F, Kawabata A, Oki E (2020) Distributed server allocation model with preventive start-time optimization against single failure. In: 2020 IEEE 21st International Conference on high performance switching and routing (HPSR). IEEE, pp 1–6

  27. 27.

    Nguyen TT, Jörg R (2020) Improved bi-criteria approximation schemes for load balancing on unrelated machines with cost constraints. Theor Comput Sci.

    Article  MATH  Google Scholar 

  28. 28.

    Cayci S, Gupta S, Eryilmaz A (2020) Group-fair online allocation in continuous time. arXiv preprint arXiv:2006.06852, pp 1–21

  29. 29.

    Tyagi M, Manoria M, Mishra B (2020) Efficient user authentication, server allocation and secure data storage in cloud. Int J Internet Technol Secur Trans 10(1–2):211–228

    Article  Google Scholar 

  30. 30.

    Kaur M, Aron R (2020) Energy-aware load balancing in fog cloud computing. Mater Today Proc

  31. 31.

    Siyun Y, Nelson L, Vidayadhar KG, Haipeng S (2020) Data driven server allocation at virtual computing labs. Queueing Models Serv Manag 3(2):137–166

    Google Scholar 

  32. 32.

    Li D, Asikaburu C, Dong B, Zhou H, Azizi S (2020) Towards optimal system deployment for edge computing: a preliminary study. In: 2020 29th International Conference on Computer Communications and Networks (ICCCN). IEEE, pp 1–6

  33. 33.

    Mukhopadhyay A, Ruffini M (2020) Learning automata for multi-access edge computing server allocation with minimal service migration. In: ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, pp 1–6

  34. 34.

    Jaya I, Cai W, Li Y (2020) Rendering server allocation for mmorpg players in cloud gaming. In: 49th International Conference on Parallel Processing-ICPP, pp 1–11

  35. 35.

    Jayasinghe M, Tari Z, Zeephongsekul P, Zomaya AY (2011) Task assignment in multiple server farms using preemptive migration and flow control. J Parallel Distrib Comput 71(12):1608–1621

    Article  Google Scholar 

  36. 36.

    Sreeram I, Vuppala VPK (2019) Http flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm. Appl comput inf 15(1):59–66

    Google Scholar 

  37. 37.

    Prasad KM, Reddy ARM, Rao KV (2017) Bifad: bio-inspired anomaly based http-flood attack detection. Wirel Pers Commun 97(1):281–308

    Article  Google Scholar 

  38. 38.

    Xiao C, Ye J, Esteves RM, Rong C (2016) Using spearman’s correlation coefficients for exploratory data analysis on big dataset. Concurr Comput Pract Exp 28(14):3866–3878

    Article  Google Scholar 

  39. 39.

    Chappell L, Combs G (2010) Wireshark network analysis: the official Wireshark certified network analyst study guide. Protocol Analysis Institute, Chappell University

  40. 40.

    Fontugne R, Borgnat P, Abry P, Fukuda K (2010) Mawilab: combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking. In: Proceedings of the 6th International COnference, pp 1–12

  41. 41.

    Lashkari AH, Draper-Gil G, Mamun MSI, Ghorbani AA (2017) Characterization of tor traffic using time based features. ICISSP, pp 253–262

  42. 42.

    Pacheco F, Exposito E, Gineste M, Baudoin C, Aguilar J (2018) Towards the deployment of machine learning solutions in network traffic classification: a systematic survey. IEEE Commun Surv Tutor 21(2):1988–2014

    Article  Google Scholar 

  43. 43.

    Boutaba R, Salahuddin MA, Limam N, Ayoubi S, Shahriar N, Estrada-Solano F, Caicedo OM (2018) A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J Internet Serv Appl 9(1):16

    Article  Google Scholar 

  44. 44.

    Rashmiranjan N, Chandra PU, Kumar DS (2020) A comprehensive review on deep learning-based methods for video anomaly detection. Image Vis Comput 106:104078

    Google Scholar 

  45. 45.

    Li P, Chen Z, Yang LT, Gao J, Zhang Q, Jamal DM (2018) An improved stacked auto-encoder for network traffic flow classification. IEEE Netw 32(6):22–27

    Article  Google Scholar 

  46. 46.

    Blanco V, Japón A, Puerto J (2020) Optimal arrangements of hyperplanes for svm-based multiclass classification. Adv Data Anal Classif 14(1):175–199

    MathSciNet  Article  Google Scholar 

  47. 47.

    Punitha V, Mala C (2020) A deep learning approach for detection of application layer attacks in internet. In: Handling Priority Inversion in Time-Constrained Distributed Databases, Chap 10. IGI Global, pp 175–188.

  48. 48.

    Arumugam P, Jose P (2018) Efficient decision tree based data selection and support vector machine classification. Mater Today Proc 5(1):1679–1685

    Article  Google Scholar 

Download references


The authors acknowledge the valuable discussions and suggestions given by Dr. N. P. Gopalan, Professor, National Institute of Technology, Tiruchirappalli for this paper.

Author information



Corresponding author

Correspondence to V. Punitha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Punitha, V., Mala, C. Traffic classification for efficient load balancing in server cluster using deep learning technique. J Supercomput 77, 8038–8062 (2021).

Download citation


  • Network traffic classification
  • Server allocation strategy
  • Server cluster
  • Deep learning technique