Skip to main content

Advertisement

Log in

SS-ITS: secure scalable intelligent transportation systems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This paper introduces a secure and scalable intelligent transportation and human behavior system to accurately discover knowledge from urban traffic data. The data are secured using blockchain learning technology, where the scalability is ensured by a threaded GPU. In addition, different optimizations are provided to efficiently process data on the GPU. A reinforcement deep learning algorithm is also established to merge local knowledge discovered on each site into global knowledge. To demonstrate the applicability of the proposed framework, intensive experiments have been carried out on well-known intelligent transportation and human behavior data. Our results show that our proposed framework outperforms the baseline solutions for the outlier detection use case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html.

References

  1. Ali ZH, Ali HA (2020) Towards sustainable smart iot applications architectural elements and design: opportunities, challenges, and open directions. J Supercomput. https://doi.org/10.1007/s11227-020-03477-7

    Article  Google Scholar 

  2. Alsrehin NO, Klaib AF, Magableh A (2019) Intelligent rransportation and control systems using data mining and machine learning techniques: a comprehensive study. IEEE Access 7:49830–49857

    Article  Google Scholar 

  3. Atluri G, Karpatne A, Kumar V (2018) Spatio-temporal data mining: a survey of problems and methods. ACM Comput Surveys 51(4):1–41

    Article  Google Scholar 

  4. Belhadi A, Djenouri Y, Lin JCW (2019)Comparative study on trajectory outlier detection algorithms. In: IEEEE international conference on data mining workshops, pp. 415–423

  5. Bhowmick K, Narvekar M (2018) Trajectory outlier detection for traffic events: a survey. In: Bhalla S, Bhateja V, Chandavale A, Hiwale A, Satapathy S (eds) Intelligent computing and information and communication. Advances in intelligent systems and computing, vol 673. Springer, Singapore. https://doi.org/10.1007/978-981-10-7245-1_5

    Chapter  Google Scholar 

  6. Breunig MM, Kriegel HP, Ng RT, Sander J (2000) Lof: identifying density-based local outliers. ACM SIGMOD Record 29:93–104

    Article  Google Scholar 

  7. Chai H, Leng S, Chen Y, Zhang K (2020) A hierarchical blockchain-enabled federated learning algorithm for knowledge sharing in internet of vehicles. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2020.3002712

    Article  Google Scholar 

  8. Chandola V, Banerjee A, Kumar V (2010) Anomaly detection for discrete sequences: A survey. IEEE Trans Knowl Data Eng 24(5):823–839

    Article  Google Scholar 

  9. Chen Q, Srivastava G, Parizi RM, Aloqaily M, Al Ridhawi I (2020) An incentive-aware blockchain-based solution for internet of fake media things. Inf Process Manag 57:102370

    Article  Google Scholar 

  10. Dai Y, Xu D, Maharjan S, Chen Z, He Q, Zhang Y (2019) Blockchain and deep reinforcement learning empowered intelligent 5g beyond. IEEE Netw 33(3):10–17

    Article  Google Scholar 

  11. Dai Y, Xu D, Zhang K, Maharjan S, Zhang Y (2020) Deep reinforcement learning and permissioned blockchain for content caching in vehicular edge computing and networks. IEEE Trans Veh Technol 69(4):4312–4324

    Article  Google Scholar 

  12. Djenouri Youcef AZ, Chiarandini M (2018)Outlier detection in urban traffic flow distributions. In: IEEE international conference on data mining, pp. 935–940

  13. Djenouri Y, Belhadi A, Fournier-Viger P, Fujita H (2018) Mining diversified association rules in big datasets: A cluster/GPU/genetic approach. Inf Sci 459:117–134

    Article  MathSciNet  Google Scholar 

  14. Djenouri Y, Belhadi A, Lin JCW, Djenouri D, Cano A (2019) A survey on urban traffic anomalies detection algorithms. IEEE Access 7:12192–12205

    Article  Google Scholar 

  15. Djenouri Y, Bendjoudi A, Habbas Z, Mehdi M, Djenouri D (2017) Reducing thread divergence in gpu-based bees swarm optimization applied to association rule mining. Concurr Comput Pract Exp 29(9):e3836

    Article  Google Scholar 

  16. Djenouri Y, Bendjoudi A, Mehdi M, Nouali-Taboudjemat N, Habbas Z (2015) Gpu-based bees swarm optimization for association rules mining. J Supercomput 71(4):1318–1344

    Article  Google Scholar 

  17. Djenouri Y, Djenouri D, Belhadi A, Cano A (2018) Exploiting GPU and cluster parallelism in single scan frequent itemset mining. Inf Sci 496:363–377

    Article  Google Scholar 

  18. Djenouri Y, Srivastava G, Jerry Lin C-W (2020) Fast and accurate convolution neural network for detecting manufacturing datas. IEEE Trans Ind Inf. https://doi.org/10.1109/TII.2020.3001493

    Article  Google Scholar 

  19. Djenouri Y, Zimek A (2018) Outlier detection in urban traffic data. In: International Conference on Web Intelligence, Mining and Semantics, p. 3

  20. Doshi K, Yilmaz Y (2020) Fast unsupervised anomaly detection in traffic videos. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 624–625

  21. Feizollahibarough S, Ashtiani M (2020) A security-aware virtual machine placement in the cloud using hesitant fuzzy decision-making processes. J Supercomput. https://doi.org/10.1007/s11227-020-03496-4

    Article  Google Scholar 

  22. Feng Z, Zhu Y (2016) A survey on trajectory data mining: Techniques and applications. IEEE Access 4:2056–2067

    Article  Google Scholar 

  23. Feremans L, Vercruyssen V, Cule B, Meert W (2019) Goethals B Pattern-based anomaly detection in mixed-type time series. In: Joint European conference on machine learning and knowledge discovery in databases, pp. 240–256

  24. Gupta M, Gao J, Aggarwal CC, Han J (2014) Outlier detection for temporal data: A survey. IEEE Trans Knowl Data Eng 26(9):2250–2267

    Article  Google Scholar 

  25. Kong X, Song X, Xia F, Guo H, Wang J, Tolba A (2018) Lotad: Long-term traffic anomaly detection based on crowdsourced bus trajectory data. World Wide Web 21(3):825–847

    Article  Google Scholar 

  26. Li, X. Jiang, P., Chen, T., Luo, X., Wen, Q. (2020) A survey on the security of blockchain systems. Future Gener Comput Syst 107:841–853

    Article  Google Scholar 

  27. Li W, Song H, Zeng F (2018) Policy-based secure and trustworthy sensing for internet of things in smart cities. IEEE Internet Things J 5(2):716–723

    Article  Google Scholar 

  28. Liu CH, Lin Q, Wen S (2018) Blockchain-enabled data collection and sharing for industrial iot with deep reinforcement learning. IEEE Trans Ind Inf 15(6):3516–3526

    Article  Google Scholar 

  29. Liu M, Yu FR, Teng Y, Leung VC, Song M (2019) Performance optimization for blockchain-enabled industrial internet of things (iiot) systems: A deep reinforcement learning approach. IEEE Trans Ind Inf 15(6):3559–3570

    Article  Google Scholar 

  30. Liu Y, Li Z, Zhou C, Jiang Y, Sun J, Wang M, He X (2019) Generative adversarial active learning for unsupervised outlier detection. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2019.2905606

    Article  Google Scholar 

  31. Louati A, Louati H, Li Z (2020) Deep learning and case-based reasoning for predictive and adaptive traffic emergency management. J Supercomput. https://doi.org/10.1007/s11227-020-03435-3

    Article  Google Scholar 

  32. Lu Y, Huang X, Zhang K, Maharjan S, Zhang Y (2020) Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles. IEEE Trans Veh Technol 69(4):4298–4311

    Article  Google Scholar 

  33. Luo J, Chen Q, Richard Yu F, Tang L (2020) Blockchain-enabled software-defined industrial internet of things with deep reinforcement learning. IEEE Internet Things J 7(6):5466–5480

    Article  Google Scholar 

  34. Meng F, Yuan G, Lv S, Wang Z, Xia S (2019) An overview on trajectory outlier detection. Artif Intell Rev 52(4):2437–2456

    Article  Google Scholar 

  35. Na GS, Kim D, Yu H (2018)Dilof: Effective and memory efficient local outlier detection in data streams. In: ACM International conference on knowledge discovery & data mining, pp. 1993–2002

  36. Nesa N, Ghosh T, Banerjee I (2018) Non-parametric sequence-based learning approach for outlier detection in iot. Future Gener Comput Syst 82:412–421

    Article  Google Scholar 

  37. Połap D, Srivastava G, Jolfaei A, Parizi RM (2020)Blockchain technology and neural networks for the internet of medical things. In: IEEE conference on computer communications workshops, pp. 508–513

  38. Qiu C, Yu FR, Yao H, Jiang C, Xu F, Zhao C (2018) Blockchain-based software-defined industrial internet of things: A dueling deep q-learning approach. IEEE Internet Things J 6(3):4627–4639

    Article  Google Scholar 

  39. Qu Y, Gao L, Luan TH, Xiang Y, Yu S, Li B, Zheng G (2020) Decentralized privacy using blockchain-enabled federated learning in fog computing. IEEE Internet Things J 7(6):5171–5183. https://doi.org/10.1109/JIOT.2020.2977383

    Article  Google Scholar 

  40. Raman MG, Somu, N, Jagarapu S, Manghnani T, Selvam T, Krithivasan K, Sriram VS (2019) An efficient intrusion detection technique based on support vector machine and improved binary gravitational search algorithm. Artif Intell Rev. https://doi.org/10.1007/s10462-019-09762-z

    Article  Google Scholar 

  41. Roberge V, Tarbouchi M, Labonté G (2018) Fast genetic algorithm path planner for fixed-wing military UAV Using GPU. IEEE Trans Aerosp Electron Syst 54(5):2105–2117

    Article  Google Scholar 

  42. Schubert E, Zimek A, Kriegel HP (2014) Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection. Data Min Knowl Discov 28(1):190–237

    Article  MathSciNet  Google Scholar 

  43. Sezer OB, Gudelek MU, Ozbayoglu AM (2020) Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Appl Soft Comput 90:106181

    Article  Google Scholar 

  44. Singh K, Upadhyaya S (2012) Outlier detection: applications and techniques. Int J Comput Sci Issues 9(1):307

    Google Scholar 

  45. Vercruyssen V, Meert W, Davis J (2020) Transfer learning for anomaly detection through localized and unsupervised instance selection. In: AAAI conference on artificial intelligence, pp. 6054–6061

  46. Wang F, Li M, Mei Y, Li W (2020) Time series data mining: A case study with big data analytics approach. IEEE Access 8:14322–14328

    Article  Google Scholar 

  47. Weng J, Weng J, Zhang J, Li M, Zhang Y, Luo W (2019) Deepchain: auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE Trans Depend Sec Comput. https://doi.org/10.1109/TDSC.2019.2952332

    Article  Google Scholar 

  48. Xiao, Y., Zhang, N., Lou, W., Hou, Y.T.: (2020) A survey of distributed consensus protocols for blockchain networks. IEEE Commun Surv Tutor 22:1432–1465

    Article  Google Scholar 

  49. Yu T, Wang X, Shami A (2017) Recursive principal component analysis-based data outlier detection and sensor data aggregation in iot systems. IEEE Internet Things J 4(6):2207–2216

    Article  Google Scholar 

  50. Yu Z, Yoon JS, Venkatesh P, Park J, Yu J, Park HS (2018)Humbi 1.0: Human multiview behavioral imaging dataset. arXiv preprint arXiv:1812.00281

  51. Zhang C, Song D, Chen Y, Feng X, Lumezanu C, Cheng W, Ni J, Zong B, Chen H, Chawla NV (2019) A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In: The International Conference on Artificial Intelligence vol. 33, pp. 1409–1416

  52. Zhang J, Zulkernine M, Haque A (2008) Random-forests-based network intrusion detection systems. IEEE Trans Syst Man Cybern Part C (Applications and Reviews) 38(5):649–659

    Article  Google Scholar 

  53. Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol 6(3):29

    Article  Google Scholar 

  54. Zheng Y, Capra L, Wolfson O, Yang H (2014) Urban computing: concepts, methodologies, and applications. ACM Trans Intell Syst Technol 5(3):38

    Google Scholar 

  55. Zhou G, Bo R, Chien L, Zhang X, Yang S, Su D (2018) GPU-accelerated algorithm for online probabilistic power flow. IEEE Trans Power Syst 33(1):1132–1135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Chun-Wei Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhadi, A., Djenouri, Y., Srivastava, G. et al. SS-ITS: secure scalable intelligent transportation systems. J Supercomput 77, 7253–7269 (2021). https://doi.org/10.1007/s11227-020-03582-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03582-7

Keywords

Navigation