Skip to main content

Optimal fault-tolerant quantum comparators for image binarization

Abstract

Quantum image processing focuses on the use of quantum computing in the field of digital image processing. In the last few years, this technique has emerged since the properties inherent to quantum mechanics would provide the computing power required to solve hard problems much faster than classical computers. Binarization is often recognized to be one of the most important steps in image processing systems. Image binarization consists of converting the digital image into a black and white image, so that the essential properties of the image are preserved. In this paper, we propose a quantum circuit for image binarization based on two novel comparators. These comparators are focused on optimizing the number of T gates needed to build them. The use of T gates is essential for quantum circuits to counteract the effects of internal and external noise. However, these gates are highly expensive, and its slowness also represents a common bottleneck in this type of circuit. The proposed quantum comparators have been compared with other state-of-the-arts comparators. The analysis of the implementations has shown our comparators are the best option when noise is a problem and its reduction is mandatory.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Caraiman S, Manta V (2012) Image processing using quantum computing. In: 2012 16th International Conference on System Theory, Control and Computing (ICSTCC), pp. 1–6. IEEE

  2. 2.

    Chetia R, Boruah S, Roy S, Sahu P (2019) Quantum image edge detection based on four directional sobel operator. International Conference on Pattern Recognition and Machine Intelligence. Springer, Berlin, pp 532–540

    Chapter  Google Scholar 

  3. 3.

    Fan P, Zhou RG, Hu W, Jing N (2019) Quantum image edge extraction based on classical Sobel operator for NEQR. Quantum Inf Process 18(1):24

    Article  Google Scholar 

  4. 4.

    Gidney C (2018) Halving the cost of quantum addition. Quantum 2:74

    Article  Google Scholar 

  5. 5.

    Guerreschi GG, Hogaboam J, Baruffa F, Sawaya N (2020) Intel quantum simulator: a cloud-ready high-performance simulator of quantum circuits. CoRR abs/2001.10554

  6. 6.

    Häner T, Steiger DS, Svore K, Troyer M (2018) A software methodology for compiling quantum programs. Quantum Sci Technol 3(2):020501

    Article  Google Scholar 

  7. 7.

    Iliyasu AM (2013) Review towards realising secure and efficient image and video processing applications on quantum computers. Entropy 15:2874–2974. https://doi.org/10.3390/e15082874

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Jones T, Brown A, Bush I, Benjamin SC (2019) Quest and high performance simulation of quantum computers. Sci Rep 9(1):1–11

    Google Scholar 

  9. 9.

    Li HS, Fan P, Xia HY, Peng H, Long GL (2020) Efficient quantum arithmetic operation circuits for quantum image processing. Sci China Phys Mech Astronomy 63:1–13

    Article  Google Scholar 

  10. 10.

    Li P, Shi T, Zhao Y, Lu A (2020) Design of threshold segmentation method for quantum image. Int J Theor Phys 59(2):514–538

    MathSciNet  Article  Google Scholar 

  11. 11.

    Michalak H, Okarma K (2019) Improvement of image binarization methods using image preprocessing with local entropy filtering for alphanumerical character recognition purposes. Entropy 21(6):562

    MathSciNet  Article  Google Scholar 

  12. 12.

    Muñoz-Coreas E, Thapliyal H (2019) Quantum circuit design of a t-count optimized integer multiplier. IEEE Trans Comput 68(5):729–739

    MathSciNet  Article  Google Scholar 

  13. 13.

    Nielsen MA, Chuang I (2002) Quantum computation and quantum information. Am J Phys 70:558

    Article  Google Scholar 

  14. 14.

    Orts F, Ortega G, Combarro EF, Garzón EM (2020) A review on reversible quantum adders. J Netw Comput Appl 170:102810. https://doi.org/10.1016/j.jnca.2020.102810

    Article  Google Scholar 

  15. 15.

    Orts F, Ortega G, Garzón EM (2019) An optimized quantum circuit for converting from sign-magnitude to two’s complement. Quantum Inf Process 18(11):332. https://doi.org/10.1007/s11128-019-2447-7

    MathSciNet  Article  Google Scholar 

  16. 16.

    Orts F, Ortega G, Garzón EM (2020) Efficient reversible quantum design of sign-magnitude to two’s complement converters. Quantum Inf Comput 20(9–10):747–765

    MathSciNet  Google Scholar 

  17. 17.

    Pachos J, Lahtinen V (2017) A short introduction to topological quantum computation. SciPost Phys. https://doi.org/10.21468/SciPostPhys.3.3.021

    Article  MATH  Google Scholar 

  18. 18.

    Shin SW, Smith G, Smolin JA, Vazirani U (2014) How “quantum” is the D-Wave machine? arXiv preprint arXiv:1401.7087

  19. 19.

    Steiger DS, Häner T, Troyer M (2018) ProjectQ: an open source software framework for quantum computing. Quantum 2(49):10–22331

    Google Scholar 

  20. 20.

    Thapliyal H, Muñoz-Coreas E, Khalus V (2020) T-count and qubit optimized quantum circuit designs of carry lookahead adder. arXiv preprint arXiv:2004.01826

  21. 21.

    Wang L, Ran Q, Ma J, Yu S, Tan L (2019) QRCI: a new quantum representation model of color digital images. Opt Commun 438:147–158

    Article  Google Scholar 

  22. 22.

    Wang D, Liu ZH, Zhu WN, Li SZ (2012) Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39(9):302–306

    Google Scholar 

  23. 23.

    Xia H, Xiao Y, Song S, Li H (2020) Quantum circuit design of approximate median filtering with noise tolerance threshold. Quantum Inf Process 19(6):183

    MathSciNet  Article  Google Scholar 

  24. 24.

    Xia HY, Li H, Zhang H, Liang Y, Xin J (2018) An efficient design of reversible multi-bit quantum comparator via only a single ancillary bit. Int J Theor Phys 57(12):3727–3744

    Article  Google Scholar 

  25. 25.

    Xia HY, Li H, Zhang H, Liang Y, Xin J (2019) Novel multi-bit quantum comparators and their application in image binarization. Quantum Inf Process 18(7):229

    MathSciNet  Article  Google Scholar 

  26. 26.

    Xia HY, Zhang H, Song SX, Li H, Zhou YJ, Chen X (2020) Design and simulation of quantum image binarization using quantum comparator. Mod Phys Lett A 35(09):2050049

    MathSciNet  Article  Google Scholar 

  27. 27.

    Yan F, Iliyasu A, Le P (2017) Quantum image processing: a review of advances in its security technologies. Int J Quantum Inf 15:1730001. https://doi.org/10.1142/S0219749917300017

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Yan F, Venegas-Andraca S (2020) Quantum image processing. Springer, Berlin

    Book  Google Scholar 

  29. 29.

    Zhang F, Chen J (2019) Optimizing t gates in Clifford+T circuit as \(\pi /4\) rotations around Paulis

  30. 30.

    Zhang Y, Lu K, Gao Y, Wang M (2013) NEQR: a novel enhanced quantum representation of digital images. Quantum Inf Process 12(8):2833–2860

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish Ministry of Science throughout Project RTI2018-095993-B-I00 and by the European Regional Development Fund (ERDF).

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Ortega.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Orts, F., Ortega, G., Cucura, A.C. et al. Optimal fault-tolerant quantum comparators for image binarization. J Supercomput 77, 8433–8444 (2021). https://doi.org/10.1007/s11227-020-03576-5

Download citation

Keywords

  • Quantum computing
  • Quantum image binarization
  • Quantum comparator