Skip to main content
Log in

Classification of hyperspectral remote sensing image via rotation-invariant local binary pattern-based weighted generalized closest neighbor

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this article, the authors suggested a rotation-invariant local binary pattern-based weighted generalized closest neighbor (RILBP-WGCN) method for HSI classification. The proposed RILBP is an enhanced texture-based classification paradigm that utilizes local binary pattern filter for some designated bands to generate a broad sketch of spatial texture information. Likewise, the proposed WGCN technique efficiently maintains the spatial uniformity between the nearby pixels via utilizing a local weight scheme and point-to-set distance. Also, as a postprocessing step, a label enhancement method is included for additional enhancement of the label uniformity as well as increases the performance of classification method. The color composite remotely sensed image of the initial three subsequent bands is segmented into several consistent regions by utilizing the graph-based superpixel segmentation technique. Then, extracted super pixels have been made extra homogeneous by utilizing a segment grouping process. Finally, advanced decision-level fusion is also applied on the retrieved local LBP features and unique spectral features, where linear opinion pool executes a serious role for concatenating the probabilistic outcomes of numerous spectral as well as texture features. The authors evaluated the proposed technique by comparing them with the seven competing methods on numerous datasets related to HSI classification. Evaluation results confirmed that the classification effects of proposed RILBP-WGCN algorithm are significantly better in contrast to other competing classification schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Landgrebe DA, Serpico SB, Crawford MM, Singhroy V (2001) Introduction to the special issue on analysis of hyperspectral image data. IEEE Trans Geosci Remote Sens 39(7):1343–1345

    Google Scholar 

  2. Manolakis D, Shaw GS (2002) Detection algorithms for hyperspectral imaging applications. IEEE Signal Process Mag 19(1):29–43

    Google Scholar 

  3. Banerjee A, Burlina P, Diehl C (2006) A support vector method for anomaly detection in hyperspectral imagery. IEEE Trans Geosci Remote Sens 44(8):2282–2291

    Google Scholar 

  4. Patel N, Patnaik C, Dutta S, Shekh A, Dave A (2001) Study of crop growth parameters using airborne imaging spectrometer data. Int J Remote Sens 22(12):2401–2411

    Google Scholar 

  5. Bannari A, Pacheco A, Staenz K, McNairn H, Omari K (2006) Estimating and mapping crop residues cover on agricultural lands using hyperspectral and IKONOS data. Remote Sens Environ 104(4):447–459

    Google Scholar 

  6. Larsolle A, Muhammed HH (2007) Measuring crop status using multivariate analysis of hyperspectral field reflectance with application to disease severity and plant density. Precis Agric 8(1):37–47

    Google Scholar 

  7. Lawrence RL, Wood SD, Sheley RL (2006) Mapping invasive plants using hyperspectral imagery and breiman cutler classifications (random-forest). Remote Sens Environ 100(3):356–362

    Google Scholar 

  8. Zomer RJ, Trabucco A, Ustin S (2009) Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing. J Environ Manage 90(7):2170–2177

    Google Scholar 

  9. Bandos TV, Bruzzone L, Camps-Valls G (2009) Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans Geosci Remote Sens 47(3):862–873

    Google Scholar 

  10. Villa A, Benediktsson JA, Chanussot J, Jutten C (2011.) Hyperspectral image classification with independent component discriminant analysis. IEEE Trans Geosci Remote Sens 49(12):4865–4876

    Google Scholar 

  11. Li W, Prasad S, Fowler JE, Bruce LM (2012) Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans Geosc Remote Sens 50(4):1185–1198

    Google Scholar 

  12. Li W, Prasad S, Fowler JE (2013) Noise-adjusted subspace discriminant analysis for hyperspectral imagery classification. IEEE Geosci Remote Sens Lett 10(6):1374–1378

    Google Scholar 

  13. Gualtieri JA, Chettri SR, Cromp RF, Johnson LF (1999) Support vector machine classifiers as applied to AVIRIS data. Presented at the Airborne Geosci. Workshop, Pasadena, CA, USA, Feb. 1999

  14. Melgani F, Bruzzone L (2014) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790

    Google Scholar 

  15. Bruzzone L, Chi M, Marconcini M (2006) A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Trans Geosci Remote Sens 44(11):3363–3373

    Google Scholar 

  16. Gao L et al (2014) Subspace-based support vector machines for hyperspectral image classification. IEEE Geosci Remote Sens Lett 12(2):349–353

    Google Scholar 

  17. Ham J, Chen Y, Crawford MM, Ghosh J (2005.) Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 43(3):492–501

    Google Scholar 

  18. Melgani F, Serpico SB (2002) A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remote-sensing images. Pattern Recognit Lett 23(9):1053–1061

    MATH  Google Scholar 

  19. Bruzzone L, Cossu R (2002) A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps. IEEE Trans Geosci Remote Sens 40(9):1984–1996

    MATH  Google Scholar 

  20. Sun W, Yang G, Du B, Zhang L, Zhang L (2017) A sparse and low rank near-isometric linear embedding method for feature extraction in hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 55(7):4032–4046

    Google Scholar 

  21. Ma L, Crawford MM, Tian J (2010) Local manifold learning-based k-nearest-neighbor for hyperspectral image classification. IEEE Trans Geosci Remote Sens 48(11):4099–4109

    Google Scholar 

  22. Hughes G (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14(1):55–63

    Google Scholar 

  23. Pelta R, Ben-Dor E (2019) Assessing the detection limit of petroleum hydrocarbon in soils using hyperspectral remote-sensing. Remote Sens Environ 224:145–153

    Google Scholar 

  24. Kong Bo, Huan Yu, Rongxiang Du, Wang Q (2019) Quantitative estimation of biomass of alpine grasslands using hyperspectral remote sensing. Rangel Ecol Manag 72(2):336–346

    Google Scholar 

  25. Krishna G, Sahoo RN, Singh P, Bajpai V, Patra H, Kumar S, Dandapani R, Gupta VK, Viswanathan C, Ahmad T, Sahoo PM (2019) Comparison of various modelling approaches for water deficit stress monitoring in rice crop through hyperspectral remote sensing. Agric Water Manag 213:231–244

    Google Scholar 

  26. Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC (2013) Advances in spectral-spatial classification of hyperspectral images. Proc IEEE 101(3):652–675

    Google Scholar 

  27. Fauvel M, Benediktsson JA, Chanussot J, Sveinsson JR (2008) Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans Geosci Remote Sens 46(11):3804–3814

    Google Scholar 

  28. Jia S, Deng B (2016) An efficient Gabor feature-based multi-task joint support vector machines framework for hyperspectral image classification. In: Proceedings of Chin. Conf. Pattern Recognit. (CCPR), 2016, pp 14–25

  29. Fauvel M, Chanussot J, Benediktsson JA (2012) A spatial–spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognit 45(1):381–392

    Google Scholar 

  30. Sun L, Wu Z, Liu J, Xiao L, Wei Z (2014) Supervised spectral–spatial hyperspectral image classification with weighted Markov random fields. IEEE Trans Geosci Remote Sens 53(3):1490–1503

    Google Scholar 

  31. Camps-Valls G, Gomez-Chova L, Munoz-Mari J, Vila-Frances J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97

    Google Scholar 

  32. Velasco-Forero S, Manian V (2009) Improving hyperspectral image classification using spatial preprocessing. IEEE Geosci Remote Sens Lett 6(2):297–301

    Google Scholar 

  33. Pesaresi M, Benediktsson JA (2001) A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans Geosci Remote Sens 39(2):309–320

    Google Scholar 

  34. Benediktsson JA, Palmason JA, Sveinsson JR (2005) Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Remote Sens 43(3):480–491

    Google Scholar 

  35. Mura MD, Benediktsson JA, Waske B, Bruzzone L (2010) Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans Geosci Remote Sens 48(10):3747–3762

    Google Scholar 

  36. Li J, Marpu PR, Plaza A, Bioucas-Dias JM, Benediktsson JA (2013) Generalized composite kernel framework for hyperspectral image classification. IEEE Trans Geosci Remote Sens 51(9):4816–4829

    Google Scholar 

  37. Krishnapuram B, Carin L, Figueiredo MAT, Hartemink AJ (2005) Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Trans Pattern Anal Mach Intell 27(6):957–968

    Google Scholar 

  38. Tarabalka Y, Fauvel M, Chanussot J, Benediktsson JA (2010) SVM-and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci Remote Sens Lett 7(4):736–740

    Google Scholar 

  39. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210227

    Google Scholar 

  40. Chen Y, Nasrabadi NM, Tran TD (2011) Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans Geosci Remote Sens 49(10):3973–3985

    Google Scholar 

  41. Qian Y, Ye M, Zhou J (2013) Hyperspectral Image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans Geosci Remote Sens 51(4):2276–2291

    Google Scholar 

  42. Sun X, Qu Q, Nasrabadi NM, Tran TD (2014) Structured priors for sparse-representation-based hyperspectral image classification. IEEE Geosci Remote Sens Lett 11(7):1235–1239

    Google Scholar 

  43. Tian C, Zhang Qi, Sun G, Song Z, Li S (2018) FFT consolidated sparse and collaborative representation for image classification. Arab J Sci Eng 43(2):741–758

    Google Scholar 

  44. Liu J, Wu Z, Sun L, Wei Z, Xiao L (2014) Hyperspectral image classification using kernel sparse representation and semilocal spatial graph regularization. IEEE Geosci Remote Sens Lett 11(8):1320–1324

    Google Scholar 

  45. Qin Y, Tian C (2018) Weighted feature space representation with kernel for image classification. Arab J Sci Eng 43(12):7113–7125

    Google Scholar 

  46. Wang Z, Nasrabadi N, Huang T (2013) Discriminative and compact dictionary design for hyperspectral image classification using learning VQ framework. In: Proceedings of ICASSP, May 2013, pp 3427–3431

  47. Li J, Zhang H, Huang Y, Zhang L (2014) Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary. IEEE Trans Geosci Remote Sens 52(6):3707–3719

    Google Scholar 

  48. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? In: Proceedings of ICCV, Nov 2011, pp 471–478

  49. Li W, Du Q (2014) Joint within-class collaborative representation for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens 7(6):2200–2208

    Google Scholar 

  50. Li W, Du Q, Zhang F, Hu W (2015) Collaborative-representation-based nearest neighbor classifier for hyperspectral imagery. IEEE Geosci Remote Sens Lett 12(2):389–393

    Google Scholar 

  51. Li W, Du Q, Xiong M (2015) Kernel collaborative representation with Tikhonov regularization for hyperspectral image classification. IEEE Geosci Remote Sens Lett 12(1):48–52

    Google Scholar 

  52. Du Q, Li W (2015) Kernel weighted joint collaborative representation for hyperspectral image classification. Proc SPIE 9501:95010V

    Google Scholar 

  53. Xiong M, Ran Q, Li W, Zou J, Du Q (2015) Hyperspectral image classification using weighted joint collaborative representation. IEEE Geosci Remote Sens Lett 12(6):1209–1213

    Google Scholar 

  54. Han M, Cong R, Li X, Huazhu Fu, Lei J (2020) Joint spatial-spectral hyperspectral image classification based on convolutional neural network. Pattern Recogn Lett 130:38–45

    Google Scholar 

  55. Vaddi R, Manoharan P (2020) CNN based hyperspectral image classification using unsupervised band selection and structure-preserving spatial features. Infrared Phys Technol 110:103457

    Google Scholar 

  56. Hong D, Gao L, Yao J, Zhang B, Plaza A, Chanussot J (2020) Graph convolutional networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2020.3015157

    Article  Google Scholar 

  57. Zheng J, Feng Y, Bai C, Zhang J (2020) Hyperspectral image classification using mixed convolutions and covariance pooling. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2020.2995575

    Article  Google Scholar 

  58. Cao X, Yao J, Xu Z, Meng D (2020) Hyperspectral image classification with convolutional neural network and active learning. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2020.2964627

    Article  Google Scholar 

  59. Qi L, Li J, Wang Y, Lei M, Gao X (2020) Deep spectral convolution network for hyperspectral image unmixing with spectral library. Signal Process 107672

  60. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    MATH  Google Scholar 

  61. Brahnam S, Jain LC, Nanni L, Lumini A (2014) Local binary patterns: new variants and applications. Springer, Berlin, Germany

    MATH  Google Scholar 

  62. Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118

    MathSciNet  MATH  Google Scholar 

  63. Guo Z, Wang X, Zhou J, You J (2016) Robust texture image representation by scale selective local binary patterns. IEEE Trans Image Process 25(2):687–699

    MathSciNet  MATH  Google Scholar 

  64. Musci M, Feitosa RO, Costa GAOP, Velloso MLF (2013) Assessment of binary coding techniques for texture characterization in remote sensing imagery. IEEE Geosci Remote Sens Lett 10(6):1607–1611

    Google Scholar 

  65. Anderson DT, Stone KE, Keller JM, Spain CJ (2013) Combination of anomaly algorithms and image features for explosive hazard detection in forward looking infrared imagery. IEEE J Sel Top Appl Earth Observ Remote Sens 5(1):313–323

    Google Scholar 

  66. Teutsch M, Saur G (2011) Segmentation and classification of man-made maritime objects in TerraSAR-X images. In: 2011 IEEE international geoscience and remote sensing symposium, Vancouver, BC, Canada, Jul 2011, pp 2657–2660

  67. Masood K, Rajpoot N (2009) Texture based classification of hyperspectral colon biopsy samples using CLBP. In: 2009 IEEE International Symposium on Biomedical Imaging, Boston, MA, USA, Jul 2009, pp 1011–1014

  68. Li W, Chen C, Su H, Du Q (2015) Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 53(7):3681–3693

    Google Scholar 

  69. Bo C, Huchuan Lu, Wang D (2017) Weighted generalized nearest neighbor for hyperspectral image classification. IEEE Access 5:1496–1509

    Google Scholar 

  70. Du Q, Yang H (2008) Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci Remote Sens Lett 5(4):564–568

    Google Scholar 

  71. Liu M-Y, Tuzel O, Ramalingam S, Chellappa R (2011) Entropy rate superpixel segmentation. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition (CVPR), Jun 2011, pp 2097–2104

  72. Hu Z, Wu Z, Zhang Q, Fan Q, Xu J (2013) A spatially-constrained color–texture model for hierarchical VHR image segmentation. IEEE Geosci Remote Sens Lett 10(1):120–124

    Google Scholar 

  73. Beaulieu J-M, Goldberg M (1989) Hierarchy in picture segmentation: A stepwise optimization approach. IEEE Trans Pattern Anal Mach Intell 11(2):150–163

    Google Scholar 

  74. Cevikalp H, Triggs B (2010) Face recognition based on image sets. In: Proceedings of CVPR, Jun 2010, pp 2567–2573

  75. Kumar N, Zhang L, Nayar S (2008) What is a good nearest neighbors algorithm for finding similar patches in images? In: Proceedings of ECCV, 2008, pp 364–378

  76. Masip D, Vitria J (2008) Shared feature extraction for nearest neighbour face recognition. IEEE Trans Neural Netw 19(4):586–595

    Google Scholar 

  77. Lee DD, Seung HS (2000) Algorithms for non-negative matrix factorization. In: Proceedings of NIPS, 2000, pp 556–562.

  78. Tomasi C, Manduchi R (1998) Bilateral ltering for gray and color images. In: Proceedings of ICCV, Jan 1998, pp 839–846

  79. Platt J (1999) Advances in large margin classifiers. In: Smola A (ed) Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. MIT Press, Cambridge

    Google Scholar 

  80. Polikar R (2006) Ensemble based systems in decision making. IEEE Circuits Syst Mag 6(3):21–45

    Google Scholar 

  81. Prasad S, Bruce LM (2008) Decision fusion with confidence-based weight assignment for hyperspectral target recognition. IEEE Trans Geosci Remote Sens 46(5):1448–1456

    Google Scholar 

  82. Prasad S, Li W, Fowler JE, Bruce LM (2012) Information fusion in the redundant-wavelet-transform domain for noise-robust hyperspectral classification. IEEE Trans Geosci Remote Sens 50(9):3474–3486

    Google Scholar 

  83. Zou J, Li W, Qian Du (2015) Sparse representation-based nearest neighbor classifiers for hyperspectral imagery. IEEE Geosci Remote Sens Lett 12(12):2418–2422

    Google Scholar 

  84. Gou J, Du L, Zhang Y, Xiong T (2012) A new distance-weighted k-nearest neighbor classifier. J Inf Comput Sci 9(6):1429–1436

    Google Scholar 

Download references

Acknowledgements

The authors would like to take an opportunity to thank all the laboratory members of image classification group for providing their timely and continuous valuable feedback in writing this article precisely and efficiently. This work was economically supported by National Institute of Technology Kurukshetra, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Biswas, M. Classification of hyperspectral remote sensing image via rotation-invariant local binary pattern-based weighted generalized closest neighbor. J Supercomput 77, 5528–5561 (2021). https://doi.org/10.1007/s11227-020-03474-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03474-w

Keywords

Navigation