A survey on design and synthesis techniques for photonic integrated circuits

Abstract

In recent years, silicon photonics (Si-photonics) have received significant attention among researchers due to complementary metal-oxide semiconductor compatibility, and the characteristics of high-speed and low-power dissipation. The integration of electronic and optical circuits on a single chip has opened up new directions of research in the domain of digital logic design and synthesis of photonic integrated circuits (PICs). Several optical switching devices using different technologies have been designed and experimentally demonstrated, which further helps in implementing PICs. In order to efficiently design larger, complex and reliable PICs, the photonic design automation techniques are being explored as electronic design automation techniques have been investigated in case of very large-scale integration circuits. This paper presents an extensive survey of recent work reported in the literature on the domains of logic circuit design, synthesis, and physical design automation for implementing PICs. The aim of this survey is to start with the fundamental optical concepts and then move to the latest research domains of design and synthesis of PICs. Finally, we provide a discussion on the challenges and the future research directions toward practically realizing the Si-photonics and PICs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Abbreviations

AI:

Ancilla input

AIG:

AND-inverter graph

BC:

Beam combiner

BDD:

Binary decision diagram

BS:

Beam splitter

CAD:

Computer-aided-design

CLA:

Carry-lookahead adder

CMOS:

Complementary metal-oxide semiconductor

CSA:

Carry skip adder

DEMUX:

Demultiplexer

DNN:

Deep neural network

EDA:

Electronic design automation

EO:

Electro-optic

ESOP:

Exclusive-sum-of-product

GeSi:

Germanium-on-silicon

GO:

Garbage output

MEMS:

Microelectro-mechanical-system

MRR:

Micro-ring resonator

MUX:

Multiplexer

MZI:

Mach–Zehnder interferometer

OC:

Optical components

OIG:

OR-Inverter graph

PIC:

Photonic integrated circuit

RCA:

Ripple carry adder

SiN:

Silicon nitride

SiNOI:

Silicon nitride-on-insulator

SOA:

Semiconductor optical amplifier

SOI:

Silicon-on-insulator

SOP:

Sum-of-product

TO:

Thermo-optic

TOAD:

Terahertz optical asymmetric demultiplexer

VG:

Virtual gates

XGM:

Cross-gain modulation

XPM:

Cross-phase modulation

References

  1. 1.

    Rupp K, Selberherr S (2011) The economic limit to Moore’s law. IEEE Trans Semicond Manuf 24(1):1–4

    Google Scholar 

  2. 2.

    Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5(3):183–191

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Wille R, Chakrabarty K, Drechsler R et al (2018) Emerging circuit technologies: an overview on the next generation of circuits. In: Reis A, Drechsler R (eds) Advanced logic synthesis. Springer, Cham

    Google Scholar 

  4. 4.

    Smit M, Tol J, Hill M (2012) Moore’s law in photonics. Laser Photonics Rev 6(1):1–13

    Google Scholar 

  5. 5.

    Kitayama K, Notomi M, Naruse M et al (2019) Novel frontier of photonics for data processing-photonic accelerator. APL Photonics 4:090901:1–090901:24090901:24

    Google Scholar 

  6. 6.

    WIPE: http://wipe.jeppix.eu/. Accessed 17 Aug 2020

  7. 7.

    Zhoufeng Z, Feng C, Zhao Z et al (2020) Electronic-photonic arithmetic logic unit for high-speed computing. Nat Commun 11:2154

    Google Scholar 

  8. 8.

    Dutta P, Bandyopadhyay C, Giri C et al (2014) Mach–Zehnder interferometer based all optical reversible carry-lookahead adder. In: Proceedings of the IEEE ISVLSI, pp 412–417

  9. 9.

    Lumerical Inc. Photonic integrated circuit simulator. https://www.lumerical.com/products/interconnect/ (Online). Accessed 17 Aug 2020

  10. 10.

    Luceda Phtotonics. IPKISS parametric design framework. http://www.lucedaphotonics.com (Online). Accessed 17 Aug 2020

  11. 11.

    Jin J (2014) The finite element method in electromagnetics. Wiley-IEEE Press, Hoboken

    Google Scholar 

  12. 12.

    Pedrola GL (2015) Beam propagation method for design of optical waveguide devices. Wiley, Hoboken

    Google Scholar 

  13. 13.

    Condrat C, Kalla P, Blair S (2011) Logic synthesis for integrated optics. In: Proceedings of the Great Lakes Symposium on Great Lakes Symposium on VLSI (GLSVLSI), pp 13–18

  14. 14.

    Deb A, Wille R, Keszöcze O et al (2017) Synthesis of optical circuits using binary decision diagrams. Integration 59(C):42–51

    Google Scholar 

  15. 15.

    Bandyopadhyay C, Das R, Wille R et al (2018) Synthesis of circuits based on all-optical Mach–Zehnder interferometers using binary decision diagrams. Microelectron J 71:19–29

    Google Scholar 

  16. 16.

    Testa F, Pavesi L (2018) Optical switching in next generation data centers. Springer, Berlin

    Google Scholar 

  17. 17.

    Kumar S, Chattopadhyay T, Sengupta I (2015) Implementation of 2-bit multiplier based on electro-optic effect in Mach–Zehnder interferometers. Opt Quantum Electron 47(12):3667–3688

    Google Scholar 

  18. 18.

    Kumar A, Medhekar S (2020) All optical NOR and NAND gates using four circular cavities created in 2D nonlinear photonic crystal. Opt Laser Technol 123:105910:1–105910:9

    Google Scholar 

  19. 19.

    Taraphdar C, Chattopadhyay T, Roy JN (2010) Mach–Zehnder interferometer-based all-optical reversible logic gate. Opt Laser Technol 42(2):249–259

    Google Scholar 

  20. 20.

    Wang Q, Zhu G, Chen H et al (2004) Study of all-optical XOR using Mach–Zehnder interferometer and differential scheme. EEE J Quantum Electron 40(6):703–710

    Google Scholar 

  21. 21.

    Earnshaw MP, Cappuzzo MA, Chen E et al (2007) Ultra-low power thermo-optic silica-on-silicon waveguide membrane switch. IET Electron Lett 43(7):393–394

    Google Scholar 

  22. 22.

    Manna A, Saha S, Das R et al (2017) All optical design of cost efficient multiplier circuit using terahertz optical asymmetric demultiplexer. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp 1–5

  23. 23.

    Law FK, Uddin M, Chen AC et al (2020) Positive edge-triggered JK flip-flop using silicon-based micro-ring resonator. Opt Quantum Electron 52:314:1314:1–314:12314:12

    Google Scholar 

  24. 24.

    Das R, Bandyopadhyay C, Rahaman H (2016) All optical reversible design of Mach–Zehnder interferometer based carry-skip adder. In: Proceedings of the IEEE DISCOVER, pp 73–78

  25. 25.

    Roy JN, Chattopadhyay T, Sarkar T (2010) All-optical multiplication using SOA-MZI based programmable logic device (PLD). In: Proceedings of the International Conference on Communication, Computers and Devices

  26. 26.

    Nivedita, Kaur S, Goyal R (2019) All-optical decoder/demultiplexer with enable using SOA based Mach–Zehnder Interferometers. In: Proceedings of the International Conference on Signal Processing and Integrated Networks (SPIN), pp 780–784

  27. 27.

    Dutta P, Bandyopadhyay C, Rahaman H (2014) All optical implementation of Mach–Zehnder interferometer based reversible sequential circuit. In: Proceedings of the International Symposium on VLSI Design and Test, pp 1–2

  28. 28.

    Dutta P, Bandyopadhyay C, Rahaman H. (2015) All optical implementation of Mach–Zehnder interferometer based reversible sequential counters. In: Proceedings of the International Conference on VLSI Design (VLSID), pp 232–237

  29. 29.

    Warta MS (2013) Computational photonics: an introduction with MATLAB. Cambridge University Press, Cambridge

    Google Scholar 

  30. 30.

    Ying Z, Zhao Z, Feng C et al (2018) Automated logic synthesis for electro-optic logic-based integrated optical computing. OSA Opt Express 26(21):28002–28012

    Google Scholar 

  31. 31.

    Ying Z, Zhao Z, Feng C et al (2019) Automated logic synthesis for electro-optic computing in integrated photonics. In: Proceedings of the Design, Automation Test in Europe Conference (DATE), pp 1483–1488

  32. 32.

    Kotiyal S, Thapliyal H, Ranganathan H (2012) Mach–Zehnder interferometer based design of all optical reversible binary adder. In: Proceedings of the Design, Automation Test in Europe Conference (DATE), pp 721–726

  33. 33.

    Ishihara T, Shinya A, Inoue K et al (2018) An integrated nanophotonic parallel adder. ACM J Emerg Technol Comput Syst 26(21):28002–28012

    Google Scholar 

  34. 34.

    Papadimitriou GI, Papazoglou C, Pomportsis AS (2003) Optical switching: switch fabrics, techniques, and architectures. IEEE J Lightw Technol 21(2):384–405

    Google Scholar 

  35. 35.

    Kostinski N, Fok MP, Prucnal PR (2009) Experimental demonstration of an all-optical fiber-based Fredkin gate. OSA Opt Lett 34(18):2766–2768

    Google Scholar 

  36. 36.

    Cheng Q, Rumley S, Bahadori M et al (2018) Photonic switching in high performance datacenters [Invited]. OSA Opt Express 26(12):16022–16043

    Google Scholar 

  37. 37.

    Tu X, Song C, Huang T et al (2019) Implementation of reversible Peres gate using electro-optic effect inside lithium-niobate based Mach–Zehnder interferometers. MDPI Micromach 10:1

    Google Scholar 

  38. 38.

    Datta K, Sengupta I (2014) All optical reversible multiplexer design using Mach–Zehnder interferometer. In: Proceedings of the International Conference on VLSI Design (VLSID), pp 539–544

  39. 39.

    Kumar A, Kumar S, Raghuwanshi SK (2014) Implementation of full-adder and full-subtractor based on electro-optic effect in Mach–Zehnder interferometers. Opt Commun 324(21):97–107

    Google Scholar 

  40. 40.

    Sasao T (1999) Photonic devices for telecommunications. Springer, Berlin

    Google Scholar 

  41. 41.

    Song N, Perkowski MA (1993) EXORCISM-MV-2: minimization of exclusive sum of products expressions for multiple-valued input incompletely specified functions. In: Proceedings of the International Symposium on Multiple-Valued Logic (ISMVL), pp 132–137

  42. 42.

    Akers SB (1978) Binary decision diagrams. IEEE Trans Comput 27(6):509–516

    MATH  Google Scholar 

  43. 43.

    Bryant RE (1986) Graph-based algorithms for boolean function manipulation. IEEE Trans Comput 35(8):677–691

    MATH  Google Scholar 

  44. 44.

    Mishchenko A, Chatterjee S, Brayton RK (2006) DAG-aware AIG rewriting: a fresh look at combinational logic synthesis. In: Proceedings of the ACM/IEEE Design Automation Conference (DAC), pp 532–535

  45. 45.

    Deb A, Wille R, Drechsler R (2017) OR-inverter graphs for the synthesis of optical circuits. In: Proceedings of the IEEE International Symposium on Multiple-Valued Logic (ISMVL), pp 278–283

  46. 46.

    Dong H, Sun H, Wang Q et al (2006) 80Gb/s all-optical logic AND operation using Mach–Zehnder interferometer with differential scheme. Opt Commun 265(1):79–83

    Google Scholar 

  47. 47.

    Xu M, Wang Y, Zhai M et al (2018) Ultrafast passive all-optical full function logic gates on micro-silicon-on-insulator waveguide chip. SPIE J Nanophotonics 12(4):1–17

    Google Scholar 

  48. 48.

    Datta K, Chattopadhyay T, Sengupta I (2015) All optical design of binary adders using semiconductor optical amplifier assisted Mach–Zehnder interferometer. Microelectron J 46(9):839–847

    Google Scholar 

  49. 49.

    Ying Z, Wang Z, Zhao Z et al (2018) Microdisk-based full adders for optical computing in silicon photonics. In: Proceedings of the IEEE Conference on Lasers and Electro-optics (CLEO), pp 1–2

  50. 50.

    Ying Z, Wang Z, Zhao Z et al (2018) Silicon microdisk-based full adders for optical computing. OSA Opt Express 43(5):983–986

    Google Scholar 

  51. 51.

    Pal A, Kumar S, Sharma S (2018) Design of optical decoder circuits using electro-optic effect inside Mach–Zehnder interferometers for high speed communication. Photonic Netw Commun 35(1):79–89

    Google Scholar 

  52. 52.

    Sharma S, Chakrabarty K, Roy S (2018) On designing all-optical multipliers using Mach–Zender interferometers. In: Proceedings of the Euromicro Conference on Digital System Design (DSD), pp 672–679

  53. 53.

    Chattopadhyay T, Roy JN (2011) All-optical method of developing half and full subtractors by the use of phase encoding principle. Opt Int J Light Electron Opt 122(24):2207–2210

    Google Scholar 

  54. 54.

    Abdulnabi SH, Abbas MN (2019) Design an all-optical combinational logic circuits based on nano-ring insulator-metal-insulator plasmonic waveguides. MDPI Photonics 6(1):1–13

    Google Scholar 

  55. 55.

    Bhattacharyya A, Gayen DK, Chattopadhyay T (2016) Design of 2-to-4 all-optical decoder with the help of terahertz optical asymmetric demultiplexer. Int J Mod Nonlinear Theory Appl 22(5):67–72

    Google Scholar 

  56. 56.

    Kaler R, Kaler RS (2011) Implemtation of optical encoder and multiplexer using Mach–Zehnder inferometer. Opt Int J Light Electron Opt 122(15):1399–1405

    Google Scholar 

  57. 57.

    Rajasekar R, Latha R, Robinson S (2019) Ultra-contrast ratio optical encoder using photonic crystal waveguide. Mater Lett 251(5):144–147

    Google Scholar 

  58. 58.

    Yonghui T, Zhao Y, Chen W et al (2015) Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators. OSA Opt Express 23(20):26342–26355

    Google Scholar 

  59. 59.

    Dali PP, Godbole A, Sahu S et al (2015) Microring resonator based all optical NAND and NOT gate with higher output power. In: Proceedings of the Asia Communications and Photonics Conference (ACPC), pp 1–3

  60. 60.

    Kim JH, Kim BC, Byun YT et al (2004) All-optical AND gate using cross-gain modulation in semiconductor optical amplifiers. Jpn J Appl Phys 43(2):608–610

    Google Scholar 

  61. 61.

    Singh S, Lovkesh X (2012) Ultrahigh speed optical signal processing logic based on an SOA-MZI. IEEE J Sel Top Quantum Electron 18(2):970–977

    Google Scholar 

  62. 62.

    Singh P, Tripathi DK, Dixit HK (2014) Designs of all-optical NOR gates using SOA based MZI. Opt Int J Light Electron Opt 125(16):4437–4440

    Google Scholar 

  63. 63.

    Kotb A, Zoiros KE, Guo C (2018) All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach–Zehnder interferometer modules. Opt Laser Technol 108:426–433

    Google Scholar 

  64. 64.

    Kumar S, Singh G, Bisht A et al (2015) Proposed new approach to the design of universal logic gates using the electro-optic effect in Mach–Zehnder interferometers. OSA Appl Opt 54(28):8479–8484

    Google Scholar 

  65. 65.

    Chanderkanta Chen NK, Kaushik BK et al (2019) Implementation of reversible Peres gate using electro-optic effect inside lithium-niobate based Mach–Zehnder interferometers. Opt Laser Technol 117(6):28–37

    Google Scholar 

  66. 66.

    Chattopadhyay T, Roy JN (2011) Semiconductor optical amplifier (SOA)-assisted Sagnac switch for designing of all-optical tri-state logic gates. Opt Int J Light Electron Opt 122(12):1073–1078

    Google Scholar 

  67. 67.

    Berrettini G, Simi A, Malacarne A et al (2006) Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate. IEEE Photonics Technol Lett 18(8):917–919

    Google Scholar 

  68. 68.

    Singh P, Tripathi DK, Jaiswal S et al (2014) Designs of all-optical buffer and OR gate using SOA-MZI. Opt Quantum Electron 46(11):1435–1444

    Google Scholar 

  69. 69.

    Koteb A (2017) Theoretical analysis of soliton NOR gate with semiconductor optical amplifier-assisted Mach–Zehnder interferometer. Opt Quantum Electron 49(5):1–11

    Google Scholar 

  70. 70.

    Gayen DK, Chattopadhyay T, Pal RK et al (2010) All-optical multiplication with the help of semiconductor optical amplifier-assisted Sagnac switch. J Comput Electron 9(2):57–67

    Google Scholar 

  71. 71.

    Wu Y, Shih TT, Chen M (2008) New all-optical logic gates based on the local nonlinear Mach–Zehnder interferometer. OSA Opt Express 16(1):248–257

    Google Scholar 

  72. 72.

    Poustie AJ, Blow KJ (2000) Demonstration of an all-optical Fredkin gate. Opt Commun 174(1):317–320

    Google Scholar 

  73. 73.

    Chattopadhyay T (2012) All-optical modified Fredkin gate. IEEE J Sel Top Quantum Electron 18(2):585–592

    Google Scholar 

  74. 74.

    Kotiyal S, Thapliyal H, Ranganathan N (2012) Mach–Zehnder interferometer based all optical reversible NOR gates. In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp 207–212

  75. 75.

    Zhao Z, Wang Z, Ying Z et al (2018) Logic synthesis for energy-efficient photonic integrated circuits. In: Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC), pp 355–360

  76. 76.

    Kumar A (2016) Implementation of all-optical NAND logic gate and half-adder using the micro-ring resonator structures. Opt Quantum Electron 48(10):477

    Google Scholar 

  77. 77.

    Ying Z, Dhar S, Zhao Z et al (2018) Electro-optic ripple-carry adder in integrated silicon photonics for optical computing. IEEE J Sel Top Quantum Electron 24(6):1–10

    Google Scholar 

  78. 78.

    Thapliyal H, Ranganathan N (2011) A new reversible design of BCD adder. In: Proceedings of the Design, Automation Test in Europe (DATE), pp 1–4

  79. 79.

    Thomsen MK, Glück R, Axelsen HB (2010) Reversible arithmetic logic unit for quantum arithmetic. J Phys A Math Theor 43(38):382002

    MathSciNet  MATH  Google Scholar 

  80. 80.

    Cuccaro SA, Draper TG, Kutin SA et al (2004) A new quantum ripple carry addition circuit. arXiv: https://arxiv.org/abs/quant-ph/0410184. Accessed 17 Aug 2020

  81. 81.

    Biswas AK, Hasan MM, Chowdhury AR et al (2008) Efficient approaches for designing reversible binary coded decimal adders. Microelectron J 39(12):1693–1703

    Google Scholar 

  82. 82.

    Thapliyal H, Vinod AP (2007) Designing efficient online testable reversible adders with new reversible gate. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), pp 1085–1088

  83. 83.

    Optiwave. Design software for photonics. http://www.optiwave.com (Online). Accessed 17 Aug 2020

  84. 84.

    Maity GK, Chattopadhyay T, Roy JN et al (2009) All-optical reversible multiplexer. In: Proceedings of the International Conference on Computers and Devices for Communication (CODEC), pp 1–3

  85. 85.

    OptSim, OptSim product overview. https://www.synopsys.com/optical-solutions/rsoft/system-network-optsim.html (Online). Accessed 17 Aug 2020

  86. 86.

    Katti R, Prince S (2015) Implementation of a reversible all optical multiplexer using Mach–Zehnder interferometer. In: Proceedings of the IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), pp 1–4

  87. 87.

    Maity GK, Mandal AK, Manik NB et al (2016) All-optical TOAD based new binary sequence generator. Opt Quantum Electron 48(6):329

    Google Scholar 

  88. 88.

    Liu Z, Wu X, Xiao H et al (2018) On-chip optical parity checker using silicon photonic integrated circuits. Nanophotonics 12(7):1939–1948

    Google Scholar 

  89. 89.

    Yichen S, Harris NC, Skirlo S et al (2017) Deep learning with coherent nanophotonic circuits. Nat Photonics 11:441–446

    Google Scholar 

  90. 90.

    Zhao Z, Liu D, Li M et al (2019) Hardware–software co-design of slimmed optical neural networks. In: Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC), pp 705–710

  91. 91.

    Ishihara T, Shiomi J, Hattori N et al (2019) An optical neural network architecture based on highly parallelized WDM-multiplier-accumulator. In: Proceedings of the IEEE/ACM Workshop on Photonics-Optics Technology Oriented Networking, Information and Computing Systems (PHOTONICS), pp 15–21

  92. 92.

    Liu W, Liu W et al (2019) HolyLight: a nanophotonic accelerator for deep learning in data centers. In: Proceedings of the Design, Automation Test in Europe Conference (DATE), pp 1483–1488

  93. 93.

    Deb A, Wille R, Keszöcze O et al (2016) Gates vs. splitters: contradictory optimization objectives in the synthesis of optical circuits. ACM J Emerg Technol Comput Syst 13(1):11:1–11:13

    Google Scholar 

  94. 94.

    Wille R, Keszöcze O, Hopfmuller C et al (2015) Reverse BDD-based synthesis for splitter-free optical circuits. In: Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC), pp 172–175

  95. 95.

    Schönborn E, Datta K, Wille R et al (2015) BDD-based synthesis for all-optical Mach–Zehnder interferometer circuits. In: Proceedings of the International Conference on VLSI Design (VLSID), pp 435–440 (2015)

  96. 96.

    Zhao Z, Liu D, Ying Z et al (2019) Exploiting wavelength division multiplexing for optical logic synthesis. In: Proceedings of the Design, Automation Test in Europe Conference (DATE), pp 1567–1570

  97. 97.

    Matsuo R, Shiomi J, Ishihara T et al (2019) Exploiting wavelength division multiplexing for optical logic synthesis. In: Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC), pp 203–209

  98. 98.

    Deb A, Wille R, Drechsler R (2017) Dedicated synthesis for MZI-based optical circuits based on AND-inverter graphs. In: Proceedings of the International Symposium on Embedded Computing and System Design (ISED), pp 233–238

  99. 99.

    Burman S, Datta K, Wille R et al (2016) An improved gate library for logic synthesis of optical circuits. In: Proceedings of the International Symposium on Embedded Computing and System Design (ISED), pp 1–6

  100. 100.

    O’Connor I, Tissafi-Drissi F, Gaffiot F et al (2008) Systematic simulation-based predictive synthesis of integrated optical interconnect. IEEE Trans Very Large Scale Integr Syst 15(8):927–940

    Google Scholar 

  101. 101.

    Boos A, Ramini L, Schlichtmann U et al (2013) PROTON: an automatic place-and-route tool for optical networks-on-chip. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp 138–145

  102. 102.

    Chuang YK, Chen KJ, Lin KL et al (2018) PlanarONoC: concurrent placement and routing considering crossing minimization for optical networks-on-chip. In: Proceedings of the ACM/IEEE Design Automation Conference (DAC), pp 151:1–151:6

  103. 103.

    Condrat C, Kalla P, Blair S (2013) Channel routing for integrated optics. In: Proceedings of the ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP), pp 1–8

  104. 104.

    Condrat C, Kalla P, Blair S (2014) Crossing-aware channel routing for integrated optics. IEEE Trans Comput Aided Des Integr Circuits Syst 33(6):814–825

    Google Scholar 

  105. 105.

    Yan J (2018) On-chip optical channel routing for signal loss minimization. IEEE Trans Comput Aided Des Integr Circuits Syst 37(8):1654–1666

    Google Scholar 

  106. 106.

    Minz JR, Thyagara S, Lim SK (2007) Optical routing for 3-D system-on-package. IEEE Trans Comp Packag Technol 30(4):805–812

    Google Scholar 

  107. 107.

    Ding D, Pan DZ (2009) OIL: a nano-photonics optical interconnect library for a new photonic networks-on-chip architecture. In: Proceedings of the 11th International Workshop on System Level Interconnect Prediction (SLIP), pp 11–18

  108. 108.

    Ding D, Zhang Y, Huang H et al (2009) O-router: an optical routing framework for low power on-chip silicon nano-photonic integration. In: Proceedings of the ACM/IEEE Design Automation Conference (DAC), pp 264–269

  109. 109.

    Hendry G, Chan J, Carloni LP, Bergman K (2011) VANDAL: a tool for the design specification of nanophotonic networks. In: Proceedings of the Design, Automation Test in Europe (DATE), pp 1–6

  110. 110.

    Ding D, Yu B, Pan DZ (2012) Glow: a global router for low-power thermal-reliable interconnect synthesis using photonic wavelength multiplexing. In: Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC), pp 621–626

  111. 111.

    Beuningen AV, Ramini L, Bertozzi D et al (2015) PROTON+: a placement and routing tool for 3D optical networks-on-chip with a single optical layer. ACM J Emerg Technol Comput Syst 12(4):44:1–44:2844:28

    Google Scholar 

  112. 112.

    Beuningen AV, Schlichtmann U (2016) PLATON: a force-directed placement algorithm for 3D optical networks-on-chip. In: Proceedings of the International Symposium on Physical Design (ISPD), pp 27–34

  113. 113.

    Liu D, Zhao Z, Wang Z et al (2018) OPERON: optical-electrical power-efficient route synthesis for on-chip signals. In: Proceedings of the ACM/IEEE Design Automation Conference (DAC), pp 1–6

  114. 114.

    Condrat C, Kalla P, Blair S (2012) A methodology for physical design automation for integrated optics. In: Proceedings of the IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), pp 598–601

  115. 115.

    Hashimoto A, Stevens J (1971) Wire routing by optimizing channel assignment within large apertures. In: Proceedings of the Design Automation Workshop, pp 155–169

  116. 116.

    Chaudhary K, Robinson P (1991) Channel routing by sorting. IEEE Trans Comput Aided Des Integr Circuits Syst 10(6):754–760

    Google Scholar 

  117. 117.

    Yan J (2000) Hierarchical bubble-sorting-based non-manhattan channel routing. Comput Dig Tech 147(4):215–220

    Google Scholar 

  118. 118.

    VPIphotonics: VPItransmissionMaker optical systems. https://www.vpiphotonics.com/Tools/OpticalSystems/ (Online). Accessed 17 Aug 2020

  119. 119.

    Phoenix Software BV. Photonic design automation software. http://www.phoenixbv.com/ (Online). Accessed 17 Aug 2020

  120. 120.

    RP Photonics. RP photonics software. https://www.rp-photonics.com/software.html (Online). Accessed 17 Aug 2020

  121. 121.

    JCMwave. JCMsuite: the simulation suite for nano-optics. https://jcmwave.com/ (Online). Accessed 17 Aug 2020

  122. 122.

    Apollo Photonics Solution Suite. APSS hierarchical design tool for photonic integrated devices. http://www.noah-c.com/english/Apollo/apss/apss_enter.htm (Online). Accessed 17 Aug 2020

  123. 123.

    Simphotek: SimphoSOFT\(^{\textregistered {R}}\): Powerful photonics modeling and simulation software. http://www.simphotek.net/simphosoft.html (Online). Accessed 17 Aug 2020

  124. 124.

    SILVACO. Atlas—device simulation framework. https://www.silvaco.com/products/tcad/device_simulation/atlas/atlas.html (Online). Accessed 17 Aug 2020

  125. 125.

    CST Studio Suite. Electromagnetic field simulation software. https://www.3ds.com/products-services/simulia/products/cst-studio-suite/?utm_source=cst.com&utm_medium=301&utm_campaign=cst (Online). Accessed 17 Aug 2020

  126. 126.

    Oskooi AF, Roundy D, Ibanescu M et al (2010) MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput Phys Commun 181(3):687–702

    MATH  Google Scholar 

  127. 127.

    Bienstman P (2007) CAMFR: an efficient eigenmode expansion tool. https://photonics.intec.ugent.be/research/topics.asp?ID=17 (Online). Accessed 17 Aug 2020

  128. 128.

    EM Explorer. EM explorer studio. http://emexplorer.net/Home.php (Online). Accessed 17 Aug 2020

  129. 129.

    OpenEMS. OpenEMS—a free and open electromagnetic field solver. http://openems.de/start/ (Online). Accessed 17 Aug 2020

  130. 130.

    Photonic Research Group. Rodis. http://photonics.intec.ugent.be/research/facilities/design/rodis/default.htm (Online). Accessed 17 Aug 2020

  131. 131.

    Gedney S (2011) Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Morgan & Claypool, London

    Google Scholar 

  132. 132.

    Gallagher DFG, Felici TP (2013) Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons. In: Proceedings of the SPIE Integrated Optics: Devices, Materials, and Technologies VII, pp 69–82

  133. 133.

    Guekos G (1999) Switching theory for logic synthesis. Springer, Berlin

    Google Scholar 

  134. 134.

    Fiers M. Caphe: circuit-level time-and frequency domain modeling tool. http://photonics.intec.ugent.be/research/topics.asp?ID=138 (Online). Accessed 17 Aug 2020

  135. 135.

    Pyxis Layout. https://www.mentor.com/products/ic_nanometer_design/custom-ic-design/pyxis-layout/ (Online). Accessed 17 Aug 2020

  136. 136.

    Grant HR (2018) Opportunities and challenges in silicon photonics systems. PhD thesis. University of California, California

  137. 137.

    Bogaerts W, Chrostowski L (2018) Silicon photonics circuit design: methods, tools and challenges. Laser Photonics Rev 12(4):1700237

    Google Scholar 

  138. 138.

    Zhao Z, Gu J, Ying Z et al (2019) Design technology for scalable and robust photonic integrated circuits: invited paper. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp 1–7

  139. 139.

    Bogaerts W, Xing Y, Khan U (2019) Layout-aware variability analysis, yield prediction, and optimization in photonic integrated circuits. IEEE J Sel Top Quantum Electron 25(5):1–13

    Google Scholar 

Download references

Acknowledgements

This work by S. Sharma was supported by the Ministry of Electronics and Information Technology (MeitY), Govt. of India (Grant \(\#\): MEITY-1100-CSE). This work by S. Roy was supported by the FIG research grant of Indian Institute of Technology (IIT) Roorkee sponsored by the MHRD, Govt. of India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sudip Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Roy, S. A survey on design and synthesis techniques for photonic integrated circuits. J Supercomput 77, 4332–4374 (2021). https://doi.org/10.1007/s11227-020-03430-8

Download citation

Keywords

  • Photonic integrated circuits
  • MZI
  • Silicon photonics
  • Optical gates
  • Optical circuit design
  • Synthesis
  • CAD
  • Design automation