Efficient computation offloading for Internet of Vehicles in edge computing-assisted 5G networks

  • Shaohua Wan
  • Xiang Li
  • Yuan Xue
  • Wenmin Lin
  • Xiaolong XuEmail author


The Internet of Vehicles (IoV) is employed to gather real-time traffic information for drivers, and base stations in 5G systems are used to assist in traffic data transmission. For rapid implementation, the applications in vehicles are available to be offloaded to edge nodes (ENs) which are enhanced from micro base stations. Despite the benefits of IoV and ENs, the explosive growth of offloaded vehicle applications exceeds the capacity of ENs, causing the overload of fractional ENs. Therefore, it is necessary to offload the computing applications in overloaded ENs to other idle ENs, while it is a challenge to select appropriate offloading destination ENs. In this paper, we first consider edge computing framework for computation offloading in IoV under the architecture of 5G networks. We then formulate a multi-objective optimization problem to select suitable destination ENs, which aims to minimize the vehicle application offloading delay and offloading cost as well as realizing the load balance of ENs. Moreover, a computation offloading method for IoV, named COV, is designed to solve the multi-objective optimization problem. Finally, various simulation analyses demonstrate the effectiveness and efficiency of COV.


IoV 5G networks Edge computing Computation offloading Delay Offloading cost Load balance 



This research is supported by the National Natural Science Foundation of China under Grant No. 61702277.


  1. 1.
    Ning Z, Hu X, Chen Z, Zhou M, Hu B, Cheng J, Obaidat MS (2018) A cooperative quality-aware service access system for social internet of vehicles. IEEE Internet Things J 5(4):2506–2517CrossRefGoogle Scholar
  2. 2.
    Alam KM, Saini M, Saddik AE (2015) Toward social internet of vehicles: concept, architecture, and applications. IEEE Access 3:343–357CrossRefGoogle Scholar
  3. 3.
    Cheng J, Cheng J, Zhou M, Liu F, Gao S, Liu C (2015) Routing in internet of vehicles: a review. IEEE Trans Intell Transp Syst 16(5):2339–2352CrossRefGoogle Scholar
  4. 4.
    Kaiwartya O, Abdullah AH, Cao Y, Prasad M, Lin CT, Liu X, Altameem A (2016) Internet of vehicles: motivation, layered architecture network model challenges and future aspects. IEEE Access 4:5356–5373CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Xiang Y, Zhang LY, Rong Y, Guo S (2019) Secure wireless communications based on compressive sensing: a survey. IEEE Commun Surv Tutor 21(2):1093–1111CrossRefGoogle Scholar
  6. 6.
    Jin J, Gubbi J, Marusic S, Palaniswami M (2014) An information framework for creating a smart city through internet of things. IEEE Internet Things J 1(2):112–121CrossRefGoogle Scholar
  7. 7.
    Belavadi SS, Malik V, Udayakumar T, Srinivas A, Mohan R (2017) IoV based dynamic batch formation and scheduling technique for driverless vehicles. In: IEEE Region 10 Symposium (TENSYMP), pp 1–6Google Scholar
  8. 8.
    Giordani M, Mezzavilla M, Zorzi M (2016) Initial access in 5G mm-wave cellular networks. IEEE Commun Mag 54(11):40–47CrossRefGoogle Scholar
  9. 9.
    Giordani M, Mezzavilla M, Barati N, Rangan S, Zorzi M (2016) Comparative analysis of initial access techniques in 5G mmwave cellular networks. In: Conference on Information Science and Systems, pp 268–273Google Scholar
  10. 10.
    Mi J, Wang K, Li P, Guo S, Sun Y, Wang K (2018) Software-defined green 5G system for big data. IEEE Commun Mag 56(11):116–123CrossRefGoogle Scholar
  11. 11.
    Giordani M, Mezzavilla M, Rangan S, Zorzi M (2018) An efficient uplink multi-connectivity scheme for 5G mm wave control plane applications. IEEE Trans Wirel Commun 17(10):6806–6821CrossRefGoogle Scholar
  12. 12.
    Zeng D, Zhang J, Gu L, Guo S, Luo J (2018) Energy-efficient coordinated multipoint scheduling in green cloud radio access network. IEEE Trans Veh Technol 67(10):9922–9930CrossRefGoogle Scholar
  13. 13.
    Liu C, Li M, Hanly SV, Whiting P, Collings IB (2018) Millimeter-wave small cells: base station discovery, beam alignment, and system design challenges. IEEE Wirel Commun 25(4):40–46CrossRefGoogle Scholar
  14. 14.
    Boccardi F, Heath RW, Lozano A, Marzetta TL, Popovski P (2014) Five disruptive technology directions for 5G. IEEE Commun Mag 52(2):74–80CrossRefGoogle Scholar
  15. 15.
    Feng J, Liu Z, Wu C, Ji Y (2017) Ave: Autonomous vehicular edge computing framework with ACO-based scheduling. IEEE Trans Veh Technol 66(12):10660–10675CrossRefGoogle Scholar
  16. 16.
    Zhang K, Mao Y, Leng S, He Y, Zhang Y (2017) Mobile-edge computing for vehicular networks: a promising network paradigm with predictive offloading. IEEE Veh Technol Mag 12(2):36–44CrossRefGoogle Scholar
  17. 17.
    Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge computing—a key technology towards 5G. ETSI White Pap 11(11):1–16Google Scholar
  18. 18.
    Tran TX, Hajisami A, Pandey P, Pompili D (2017) Collaborative mobile edge computing in 5G networks: new paradigms, scenarios, and challenges. IEEE Commun Mag 55(4):54–61CrossRefGoogle Scholar
  19. 19.
    Eiza MH, Ni Q, Shi Q (2016) Secure and privacy-aware cloud-assisted video reporting service in 5G-enabled vehicular networks. IEEE Trans Veh Technol 65(10):7868–7881CrossRefGoogle Scholar
  20. 20.
    Khoda ME, Razzaque MA, Almogren A, Hassan MM, Alamri A, Alelaiwi A (2016) Efficient computation offloading decision in mobile cloud computing over 5G network. Mob Netw Appl 21(5):777–792CrossRefGoogle Scholar
  21. 21.
    Taleb T, Samdanis K, Mada B, Flinck H, Dutta S, Sabella D (2017) On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun Surv Tutor 19(3):1657–1681CrossRefGoogle Scholar
  22. 22.
    Nunna S, Kousaridas A, Ibrahim M, Dillinger M, Thuemmler C, Feussner H, Schneider A (2015) Enabling real-time context-aware collaboration through 5G and mobile edge computing. In: 2015 12th International Conference on Information Technology-New Generations (ITNG). IEEE, pp 601–605Google Scholar
  23. 23.
    Kelly SDT, Suryadevara NK, Mukhopadhyay SC (2013) Towards the implementation of IoT for environmental condition monitoring in homes. IEEE Sens J 13(10):3846–3853CrossRefGoogle Scholar
  24. 24.
    Sarkar S, Chatterjee S, Misra S (2018) Assessment of the suitability of fog computing in the context of internet of things. IEEE Trans Cloud Comput 6(1):46–59CrossRefGoogle Scholar
  25. 25.
    Xu X, Li Y, Huang T, Xue Y, Peng K, Qi L, Dou W (2019) An energy-aware computation offloading method for smart edge computing in wireless metropolitan area networks. J Netw Comput Appl 133:75–85CrossRefGoogle Scholar
  26. 26.
    Datta SK, Haerri J, Bonnet C, Da Costa RF (2017) Vehicles as connected resources: opportunities and challenges for the future. IEEE Veh Technol Mag 12(2):26–35CrossRefGoogle Scholar
  27. 27.
    Cao Y, Chen Y (2017) QOE-based node selection strategy for edge computing enabled internet-of-vehicles (EC-IoV). In: Visual Communications and Image Processing (VCIP). IEEE, pp 1–4Google Scholar
  28. 28.
    Xu X, Xue Y, Yuan Y, Qi L, Zhang X, Umer T, Wan S (2019) An edge computing-enabled computation offloading method with privacy preservation for internet of connected vehicles. Future Gener Comput Syst 96:89–100CrossRefGoogle Scholar
  29. 29.
    Wang K, Yin H, Quan W, Min G (2018) Enabling collaborative edge computing for software-defined vehicular networks. IEEE Netw 99:1–6Google Scholar
  30. 30.
    Liu J, Wang W, Li D, Wan S, Liu H (2019) Role of gifts in decision making: an endowment effect incentive mechanism for offloading in the IoV. IEEE Internet Things J 6(4):6933–6951CrossRefGoogle Scholar
  31. 31.
    Wang X, Yang LT, Li H, Lin M, Han J, Apduhan BO (2019) NQA: a nested anti-collision algorithm for RFID systems. ACM Trans Embed Comput Syst (TECS) 18(4):32Google Scholar
  32. 32.
    Xu X, Fu S, Yuan Y, Luo Y, Qi L, Lin W, Dou W (2019) Multi-objective computation offloading for workflow management in cloudlet-based mobile cloud using NSGA-II. Comput Intell 35(3):476–495. CrossRefGoogle Scholar
  33. 33.
    Baktir AC, Ozgovde A, Ersoy C (2017) How can edge computing benefit from software-defined networking: a survey, use cases, and future directions. IEEE Commun Surv Tutor 19(4):2359–2391CrossRefGoogle Scholar
  34. 34.
    Kumar N, Zeadally S, Rodrigues JJ (2016) Vehicular delay-tolerant networks for smart grid data management using mobile edge computing. IEEE Commun Mag 54(10):60–66CrossRefGoogle Scholar
  35. 35.
    Zhu J, Chan DS, Prabhu MS, Natarajan P, Hu H, Bonomi F (2013) Improving web sites performance using edge servers in fog computing architecture. In: 2013 IEEE Seventh International Symposium on Service-Oriented System Engineering, pp 320–323Google Scholar
  36. 36.
    Zhang K, Mao Y, Leng S, Zhao Q, Li L, Peng X, Pan L, Maharjan S, Zhang Y (2016) Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access 4:5896–5907CrossRefGoogle Scholar
  37. 37.
    Chen X, Pu L, Gao L, Wu W, Wu D (2017) Exploiting massive D2D collaboration for energy-efficient mobile edge computing. IEEE Wirel Commun 24(4):64–71CrossRefGoogle Scholar
  38. 38.
    Guo J, Zhang H, Yang L, Ji H, Li X (2017) Decentralized computation offloading in mobile edge computing empowered small-cell networks. In: Globecom Workshops (GC Wkshps). IEEE, pp 1–6Google Scholar
  39. 39.
    Yang L, Zhang H, Li M, Guo J, Ji H (2018) Mobile edge computing empowered energy efficient task offloading in 5G. IEEE Trans Veh Technol 67(7):6398–6409CrossRefGoogle Scholar
  40. 40.
    Bastug E, Bennis M, Debbah M (2014) Living on the edge: the role of proactive caching in 5G wireless networks. IEEE Commun Mag 52(8):82–89CrossRefGoogle Scholar
  41. 41.
    Agiwal M, Roy A, Saxena N (2016) Next generation 5G wireless networks: a comprehensive survey. IEEE Commun Surv Tutor 18(3):1617–1655CrossRefGoogle Scholar
  42. 42.
    Xu X, Liu Q, Luo Y, Peng K, Zhang X, Meng S, Qi L (2019) A computation offloading method over big data for IoT-enabled cloud-edge computing. Future Gener Comput Syst 95:522–533CrossRefGoogle Scholar
  43. 43.
    Ginting G, Fadlina, Mesran, Siahaan APU, Rahim R (2017) Technical approach of TOPSIS in decision making. Int J Recent Trends Eng Res 3(8):58–64. CrossRefGoogle Scholar
  44. 44.
    Wan S, Zhao Y, Wang T, Gu Z, Abbasi QH, Choo KKR (2019) Multi-dimensional data indexing and range query processing via Voronoi diagram for internet of things. Future Gener Comput Syst 91:382–391CrossRefGoogle Scholar
  45. 45.
    Gao Z, Wang DY, Wan SH, Zhang H, Wang YL (2019) Cognitive-inspired class-statistic matching with triple-constrain for camera free 3D object retrieval. Future Gener Comput Syst 94:641–653CrossRefGoogle Scholar
  46. 46.
    Gao Z, Xuan HZ, Zhang H, Wan S, Choo KKR (2019) Adaptive fusion and category-level dictionary learning model for multi-view human action recognition. IEEE Internet Things J. CrossRefGoogle Scholar
  47. 47.
    Wang P, Zhu Z, Wang Y (2016) A novel hybrid MCDM model combining the SAW, TOPSIS and GRA methods based on experimental design. Inf Sci 345:27–45CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information and Safety EngineeringZhongnan University of Economics and LawWuhanChina
  2. 2.School of Computer and SoftwareNanjing University of Information Science and TechnologyNanjingChina
  3. 3.School of ComputerHangzhou Dianzi UniversityHangzhouChina
  4. 4.Key Laboratory of Complex Systems Modeling and SimulationMinistry of EducationHangzhouChina

Personalised recommendations