Adaboost-based security level classification of mobile intelligent terminals

Abstract

With the rapid development of Internet of Things, massive mobile intelligent terminals are ready to access edge servers for real-time data calculation and interaction. However, the risk of private data leakage follows simultaneously. As the administrator of all intelligent terminals in a region, the edge server needs to clarify the ability of the managed intelligent terminals to defend against malicious attacks. Therefore, the security level classification for mobile intelligent terminals before accessing the network is indispensable. In this paper, we firstly propose a safety assessment method to detect the weakness of mobile intelligent terminals. Secondly, we match the evaluation results to the security level. Finally, a scheme of security level classification for mobile intelligent terminals based on Adaboost algorithm is proposed. The experimental results demonstrate that compared to a baseline that statistically calculates the security level, the proposed method can complete the security level classification with lower latency and high accuracy when massive mobile intelligent terminals access the network at the same time.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Kim J, Jeon Y, Kim H (2016) The intelligent IoT common service platform architecture and service implementation. J Supercomput 74(9):4242–4260

    Article  Google Scholar 

  2. 2.

    Boubiche DE (2018) Advanced industrial wireless sensor networks and intelligent IoT. IEEE Commun Mag 56(2):14–15

    Article  Google Scholar 

  3. 3.

    Dai W, Qiu M, Qiu L et al (2017) Who moved my data? Privacy protection in smartphones. IEEE Commun Mag 55(1):20–25

    Article  Google Scholar 

  4. 4.

    Lee YK, Kim JN, Lim KS et al (2017) Secure mobile device structure for trust IoT. J Supercomput 2017(7):1–19

    Google Scholar 

  5. 5.

    Islam N, Das S, Chen Y (2017) On-device mobile phone security exploits machine learning. IEEE Pervasive Comput 16(2):92–96

    Article  Google Scholar 

  6. 6.

    Kraijak S, Tuwanut P (2015) A survey on IoT architectures, protocols, applications, security, privacy, real-world implementation and future trends. In: Proceedings of the WiCOM’15, pp 1–6

  7. 7.

    Shi W, Cao J, Zhang Q et al (2016) Edge computing: vision and challenges. IEEE Internet Things J 3(5):637–646

    Article  Google Scholar 

  8. 8.

    Taleb T, Dutta S, Ksentini A et al (2017) Mobile edge computing potential in making cities smarter. IEEE Commun Mag 55(3):38–43

    Article  Google Scholar 

  9. 9.

    Wang J, Hong Z, Zhang Y et al (2018) Enabling security-enhanced attestation with intel SGX for remote terminal and IoT. IEEE Trans Comput Aided Des Integr Circuits Syst 37(1):88–96

    Article  Google Scholar 

  10. 10.

    Galdi C, Nappi M, Dugelay J et al (2018) Exploring new authentication protocols for sensitive data protection on smartphones. IEEE Commun Mag 56(1):136–142

    Article  Google Scholar 

  11. 11.

    Park KC, Shin DH (2017) Security assessment framework for IoT service. Telecommun Syst 64(1):193–209

    Article  Google Scholar 

  12. 12.

    Lee L, Chen C (2016) The power of Smartphones. Multimed Syst 21(1):87–101

    MathSciNet  Google Scholar 

  13. 13.

    Wang G, Song Q, Zhu X (2015) An improved data characterization method and its application in classification algorithm recommendation. Appl Intell 43(4):892–912

    Article  Google Scholar 

  14. 14.

    Jia Q, Guo L, Jin Z et al (2016) Privacy-preserving data classification and similarity evaluation for distributed systems. In: Proceedings of the ICDCS’16, pp 690–699

  15. 15.

    Cavalcanti K, Viana E, Lins F (2017) An integrated solution for the improvement of the mobile devices security based on the android platform. IEEE Lat Am Trans 15(11):2171–2176

    Article  Google Scholar 

  16. 16.

    Irwan D, Asnar Y, Hendradjaya B (2015) Confidentiality and privacy information security risk assessment for Android-based mobile devices. In: Proceedings of the ICoDSE’15, pp 1–6

  17. 17.

    Dong Z, Wu Y, Pei M et al (2015) Vehicle type classification using a semisupervised convolutional neural network. IEEE Trans Intell Transp Syst 16(4):2247–2256

    Article  Google Scholar 

  18. 18.

    Deng Y, Ren Z, Kong Y et al (2017) A hierarchical fused fuzzy deep neural network for data classification. IEEE Trans Fuzzy Syst 25(4):1006–1012

    Article  Google Scholar 

  19. 19.

    Guo Y, Jia X, Paull D (2018) Effective sequential classifier training for SVM-based multitemporal remote sensing image classification. IEEE Trans Image Process 27(6):3036–3048

    MathSciNet  Article  Google Scholar 

  20. 20.

    Ding X, Jiang T, Zou W (2017) A new method of dynamic gesture recognition using Wi-Fi signals based on Adaboost. In: Proceedings of the ISCIT’17, pp 1–5

  21. 21.

    Jiang D, Wang W, Shi L et al (2018) A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans Netw Sci Eng 5(3):1–12

    Article  Google Scholar 

  22. 22.

    Jiang D, Huo L, Song H (2018) Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans Netw Sci Eng 1(1):1–12

    Article  Google Scholar 

  23. 23.

    Jiang D, Huo L, Li Y (2018) Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE 13(5):1–23

    Google Scholar 

  24. 24.

    Jiang D, Huo L, Lv Z et al (2018) A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans Intell Transp Syst 19(10):3305–3319

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61571104), Sichuan Science and Technology Program (No. 2018JY0539), Key projects of the Sichuan Provincial Education Department (No. 18ZA0219), Fundamental Research Funds for the Central Universities (No. ZYGX2017KYQD170) and Innovation Funding (No. 2018510007000134). The authors wish to thank the reviewers for their helpful comments. Dr. Dingde Jiang and Dr. Hong Wen are corresponding authors of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Houbing Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Jiang, D., Wen, H. et al. Adaboost-based security level classification of mobile intelligent terminals. J Supercomput 75, 7460–7478 (2019). https://doi.org/10.1007/s11227-019-02954-y

Download citation

Keywords

  • Internet of Things
  • Adaboost
  • Edge server
  • Mobile intelligent terminal
  • Security level classification