Skip to main content
Log in

A novel design of fault-tolerant RAM cell in quantum-dot cellular automata with physical verification

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) emerged as a viable alternative to CMOS technology in nanotechnology. Despite the potential advantages of QCA compared with CMOS technology, QCA circuits often suffer from various manufacturing defects such as cell omission, cell displacement, and extra-cell deposition, which make them unreliable and fault-prone. Hence, it is essential in QCA technology to design a fault-tolerant circuit. The design of an optimized, high-speed RAM memory has received increasing attention of researchers as the memory unit is an essential component in the digital systems. In this paper, a new design of a fault-tolerant RAM cell is introduced using two proposed fault-tolerant three- and five-input majority gates. The proposed fault-tolerant majority gates have been evaluated in the presence of variety of defects such as cell omission, cell displacement and extra-cell deposition. The QCADesigner 2.0.3 and QCAPro tools are used for our simulations. The results indicate that the proposed majority gates have less energy consumption and more fault tolerance in comparison with the previous works. Furthermore, some physical calculations are presented to assess the functionality of the proposed gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Compano R, Molenkamp L, Paul DJ (2000) Roadmap for nanoelectronics

  2. Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. IEEE 85:541–557

    Article  Google Scholar 

  3. Lent CS et al (1993) Quantum cellular automata. Nanotechnology 4:49

    Article  Google Scholar 

  4. Chaharlang J, Mosleh M (2017) An Overview on RAM memories in QCA technology. Majl J Electr Eng 11(2):9

    Google Scholar 

  5. Faraji H, Mosleh M (2018) A fast wallace-based parallel multiplier in quantum-dot cellular automata. Int J Nano Dimens 9(1):68–78

    Google Scholar 

  6. Safavi A, Mosleh M (2016) Presenting a new efficient QCA full adder based on suggested MV32 gate. Int J Nanosci Nanotechnol 12(1):55–69

    Google Scholar 

  7. Momenzadeh M et al (2005) Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation. IEEE Trans Comput Aided Des Integr Circuits Syst 24(12):1881–1893

    Article  Google Scholar 

  8. Huang J et al (2004) Design and characterization of an and-or-inverter (AOI) gate for QCA implementation. In: Proceedings of the 14th ACM Great Lakes symposium on VLSI. ACM, Boston, pp 426–429

  9. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825

    Article  Google Scholar 

  10. Sheikhfaal S et al (2015) Designing efficient QCA logical circuits with power dissipation analysis. Microelectron J 46(6):462–471

    Article  Google Scholar 

  11. Teja VC, Polisetti S, Kasavajjala S (2008) QCA based multiplexing of 16 arithmetic & logical subsystems—a paradigm for nano computing. In: 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems

  12. Tougaw PD, Lent CS (1996) Dynamic behavior of quantum cellular automata. J Appl Phys 80(8):4722–4736

    Article  Google Scholar 

  13. Shah N, Khanday F, Bangi Z (2012) Quantum cellular automata based efficient BCD adder structure. CISME 2:11–14

    Google Scholar 

  14. Ahmad F, Bhat G (2012) Novel code converters based on quantum-dot cellular automata (QCA). Int J Sci Res (IJSR) 3:364–371

    Google Scholar 

  15. Anuradha S, Ravi B, Pasar V (2014) Design of five input majority gate full comparator using quantum-dot cellular automata. Int J Ethics Eng Manag Educ 1:326–328

    Google Scholar 

  16. Lakshmi SK, Athisha G (2010) Efficient design of logical structures and functions using nanotechnology based quantum dot cellular automata design. Int J Comput Appl 3:35–42

    Google Scholar 

  17. Rumi Z et al (2004) A method of majority logic reduction for quantum cellular automata. IEEE Trans Nanotechnol 3(4):443–450

    Article  Google Scholar 

  18. Walus K, Jullien GA, Dimitrov VS (2003) Computer arithmetic structures for quantum cellular automata. In: The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers

  19. Wei W, Walus K, Jullien GA (2003) Quantum-dot cellular automata adders. In: 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003

  20. Momenzadeh M, Ottavi M, Lombardi F (2005) Modeling QCA defects at molecular-level in combinational circuits. In: 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05)

  21. Tahoori MB et al (2004) Testing of quantum cellular automata. IEEE Trans Nanotechnol 3(4):432–442

    Article  Google Scholar 

  22. Das K, De D (2010) QCA defect and fault analysis of diverse nanostructure for implementing logic gate. Int J Recent Trends Eng 3(1):1–5

    Google Scholar 

  23. Sen B et al (2014) Efficient design of fault tolerant tiles in QCA. In: 2014 Annual IEEE India Conference (INDICON). IEEE

  24. Du H et al (2016) Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata. J Comput Electron 15(4):1484–1497

    Article  Google Scholar 

  25. Kumar D, Mitra D (2016) Design of a practical fault-tolerant adder in QCA. Microelectron J 53(Supplement C):90–104

    Article  Google Scholar 

  26. Sen B et al (2016) Towards the design of hybrid QCA tiles targeting high fault tolerance. J Comput Electron 15(2):429–445

    Article  MathSciNet  Google Scholar 

  27. Sun M et al (2018) The fundamental primitives with fault-tolerance in quantum-dot cellular automata. J Electron Test 34:109–122

    Article  Google Scholar 

  28. Wang X et al (2018) Design and comparison of new fault-tolerant majority gate based on quantum-dot cellular automata. J Semicond 39(8):085001

    Article  Google Scholar 

  29. Farazkish R (2014) A new quantum-dot cellular automata fault-tolerant five-input majority gate. J Nanopart Res 16(2):2259

    Article  Google Scholar 

  30. Goswami M, Sen B, Sikdar BK (2016) Design of low power 5-input majority voter in quantum-dot cellular automata with effective error resilience. In: 2016 Sixth International Symposium on Embedded Computing and System Design (ISED). IEEE

  31. Walus K et al (2004) QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31

    Article  Google Scholar 

  32. Srivastava S et al (2011) QCAPro—an error-power estimation tool for QCA circuit design. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS). IEEE

  33. Berzon D, Fountain TJ (1999) A memory design in QCAs using the SQUARES formalism. In: Ninth Great Lakes Symposium on VLSI, 1999. Proceedings. IEEE

  34. Dehkordi MA et al (2011) Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectron J 42(5):701–708

    Article  MathSciNet  Google Scholar 

  35. Hashemi S, Navi K (2012) New robust QCA D flip flop and memory structures. Microelectron J 43(12):929–940

    Article  Google Scholar 

  36. Shamsabadi AS et al (2009) Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study. J Syst Archit 55(3):180–187

    Article  Google Scholar 

  37. Vankamamidi V, Ottavi M, Lombardi F (2008) A serial memory by quantum-dot cellular automata (QCA). IEEE Trans Comput 57(5):606–618

    Article  MathSciNet  Google Scholar 

  38. Vetteth A et al (2003) Quantum-dot cellular automata of flip-flops. ATIPS Laboratory, vol 2500

  39. Walus K et al (2003) RAM design using quantum-dot cellular automata. In: NanoTechnology Conference

  40. Yang X, Cai L, Zhao X (2010) Low power dual-edge triggered flip-flop structure in quantum dot cellular automata. Electron Lett 46(12):825–826

    Article  Google Scholar 

  41. Yang X et al (2010) Design and simulation of sequential circuits in quantum-dot cellular automata: falling edge-triggered flip-flop and counter study. Microelectron J 41(1):56–63

    Article  Google Scholar 

  42. Taskin B, Hong B (2008) Improving line-based QCA memory cell design through dual phase clocking. IEEE Trans Very Large Scale Integr (VLSI) Syst 16(12):1648–1656

    Article  Google Scholar 

  43. Vankamamidi V, Ottavi M, Lombardi F (2005) A line-based parallel memory for QCA implementation. IEEE Trans Nanotechnol 4(6):690–698

    Article  Google Scholar 

  44. Khosroshahy MB et al (2017) An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Results in physics 7:3543–3551

    Article  Google Scholar 

  45. Angizi S et al (2015) Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron J 46(1):43–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mosleh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghimizadeh, T., Mosleh, M. A novel design of fault-tolerant RAM cell in quantum-dot cellular automata with physical verification. J Supercomput 75, 5688–5716 (2019). https://doi.org/10.1007/s11227-019-02812-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-019-02812-x

Keywords

Navigation