A modified knowledge-based ant colony algorithm for virtual machine placement and simultaneous routing of NFV in distributed cloud architecture


The emergence of the new technologies such as virtualization and distributed cloud computing has provided new opportunities for management and orchestration of the networks by software-defined networking (SDN) and network function virtualization (NFV). SDN provides centralized knowledge about the network status and NFV lets networks implement their functions virtually on servers in edge cloud, thereby reducing costs and increasing flexibility as well as scalability of the networks. One of the main challenges for orchestration is how to increase utilization of physical network and edge cloud resources for better placement and routing of virtual network functions (VNFs) in service function chaining problem. We proposed a novel chaotic grey-wolf-optimized knowledge-based modified ant colony system algorithm, in order to have placement of VNFs and simultaneously allocate main paths and redundant paths to flows for service management by using the knowledge gained by SDN controllers. Since every flow that enters the network requires multiple virtual service functions in a service-chaining workflow, so in the proposed algorithm, service-chaining is distributed fairly on different cloudlets connected to each router in the network so that services use CPU and memory resources of all the cloudlets efficiently and fairly. We have evaluated our proposed framework by two standard network topologies connected to distributed cloudlets by realistic traffic workload. The results show that the proposed framework provides more utilization of physical resources in cloudlets by better virtual machine placement and also achieves lower delay and higher available bandwidth for VNFs in addition to better routing path redundancy. In addition, the algorithm converges faster compared to rival metaheuristic algorithms such as standard PSO for routing and placement problem.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20


  1. 1.

    Visual networking index report: global mobile data traffic forecast update, 2013-2018, Tech. rep., Cisco, 2014

  2. 2.

    Blanco B, Fajardo JO, Giannoulakis I (2017) Technology pillars in the architecture of future 5G mobile networks: NFV, MEC and SDN. Comput Stand Interfaces 54:216–228

    Article  Google Scholar 

  3. 3.

    Sandhya Y, Sinha K Haribabu (2017) A survey: Hybrid SDN. J Netw Comput Appl 100:35–55. https://doi.org/10.1016/j.jnca.2017.10.00

    Article  Google Scholar 

  4. 4.

    Zhang Y, Cui L, Wang W, Zhanga Y (2018) A survey on software defined networking with multiple controllers. J Netw Comput Appl 103:101–118. https://doi.org/10.1016/j.jnca.2017.11.015

    Article  Google Scholar 

  5. 5.

    Schaller S, Hood D (2017) Software defined networking architecture standardization. Comput Stand Interfaces 54:197–202

    Article  Google Scholar 

  6. 6.

    Richardson L, Ruby S (2008) RESTful web services. O’Reilly Media Inc, Sebastopol

    Google Scholar 

  7. 7.

    Bhamare D, Jain R, Samaka M, Erbad A (2016) A survey on service function chaining. J Netw Comput Appl 75:138–155. https://doi.org/10.1016/j.jnca.2016.09.001

    Article  Google Scholar 

  8. 8.

    Xiong G, Hu Y, Tian L, Lan J, Li J, Zhou Q (2016) A virtual service placement approach based on improved quantum genetic algorithm. Front Inf Technol Electron Eng 17:661–671. https://doi.org/10.1631/FITEE.1500494

    Article  Google Scholar 

  9. 9.

    Leivadeas Aris, Falkner Matthias, Lambadaris Ioannis, Kesidis George (2017) Optimal virtualized network function allocation for an SDN enabled cloud. Comput Stand Interfaces 54:266–278

    Article  Google Scholar 

  10. 10.

    Bu C, Wang X, Cheng H (2017) Enabling Adaptive Routing Service Customization via the integration of SDN and NFV. J Netw Comput Appl 93:123–136. https://doi.org/10.1016/j.jnca.2017.05.010

    Article  Google Scholar 

  11. 11.

    Tanenbaum AS, Wetherall DJ (2010) Computer Networks, 5th edn. Prentice Hall Press, Upper Saddle River

    Google Scholar 

  12. 12.

    Mininet http://mininet.org/

  13. 13.

    Luo G, Qian Z, Dong M et al (2017) Improving performance by network-aware virtual machine clustering and consolidation. J Supercomput. https://doi.org/10.1007/s11227-017-2104-9

    Google Scholar 

  14. 14.

    Kang S, Yoon W (2016) SDN-based resource allocation for heterogeneous LTE and WLAN multi-radio networks. J Supercomput 72(4):1342–1362. https://doi.org/10.1007/s11227-016-1662-6

    Article  Google Scholar 

  15. 15.

    Karakus M, Durresi A (2017) Quality of Service (QoS) in Software Defined Networking (SDN): a survey. J Netw Comput Appl 80:200–218. https://doi.org/10.1016/j.jnca.2016.12.019

    Article  Google Scholar 

  16. 16.

    Cominardi Luca, Bernardos Carlos J, Serrano Pablo (2018) Experimental evaluation of SDN-based service provisioning in mobile networks. Comput Stand Interfaces 58:158–166

    Article  Google Scholar 

  17. 17.

    Al-Sadi A, Al-Sherbaz A, Xue J and Turner SJ (2016). Routing algorithm optimization for Software Defined Network WAN, In: Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science And Applications (AIC-MITCSA), pp. 1–6. https://doi.org/10.1109/aic-mitcsa.2016.7759945

  18. 18.

    Bhamare Deval, Samaka Mohammed, Erbad Aiman, Jain Raj, Gupta L, Chan HA (2017) Optimal virtual network function placement in multi-cloud service function chaining architecture. Comput Commun 102:1–16

    Article  Google Scholar 

  19. 19.

    Chen L, Wu J, Zhou G et al (2018) QUICK: QoS-guaranteed efficient cloudlet placement in wireless metropolitan area networks. J Supercomput. https://doi.org/10.1007/s11227-018-2412-8

    Google Scholar 

  20. 20.

    Wang Y, Yuan K, Fang W, Liu Y, Jun M (2016) Research of a SDN traffic scheduling technology based on ant colony algorithm. DEStech Trans Eng. https://doi.org/10.12783/dtetr/iect2016/3754

    Google Scholar 

  21. 21.

    Naranjo PGV, Baccarelli E, Scarpiniti M (2018) Design and energy-efficient resource management of virtualized networked Fog architectures for the real-time support of IoT applications. J Supercomput 74(6):2470–2507. https://doi.org/10.1007/s11227-018-2274-0

    Article  Google Scholar 

  22. 22.

    Liao D, Wu Y, Wu Z et al (2018) AI-based software-defined virtual network function scheduling with delay optimization. Cluster Comput. https://doi.org/10.1007/s10586-018-2124-0

    Google Scholar 

  23. 23.

    Kim H, Yoon S, Jeon H et al (2016) Service platform and monitoring architecture for network function virtualization (NFV). Cluster Comput 19(4):1835–1841. https://doi.org/10.1007/s10586-016-0640-3

    Article  Google Scholar 

  24. 24.

    Zhu H, Liao X, Laat C De, Grosso P (2016) Joint flow routing-scheduling for energy efficient software defined data center networks: a prototype of energy-aware network management platform. J Netw Comput Appl 63:110–124. https://doi.org/10.1016/j.jnca.2015.10.017

    Article  Google Scholar 

  25. 25.

    Zheng X, Pan Q (2015) Multi-path SDN route selection subject to multi-constraints, In: Third International Conference on Cyberspace Technology (CCT 2015). Institution of Engineering and Technology, pp. 50–58. 10.1049/cp.2015.0818

  26. 26.

    Abe JO, Mantar HA, Yayimli AG (2015), k -maximally disjoint path routing algorithms for SDN, In: 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. IEEE, pp. 499–508. https://doi.org/10.1109/cyberc.2015.45

  27. 27.

    Open Networking Foundation, OpenFlow Wwitch Specification, v1.5, December 19, 2014, https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf

  28. 28.

    Mijumbi R, Serrat J, Gorricho JL, Latre S, Charalambides M, Lopez D (2016) Management and orchestration challenges in network functions virtualization. IEEE Commun Mag 1:1–5. https://doi.org/10.1109/mcom.2016.7378433

    Google Scholar 

  29. 29.

    Amin Ghalami Osgouei (2017) Amir Khorsandi Koohanestani, Hossein Saidi, Ali Fanian, Online assignment of non-SDN virtual network nodes to a physical SDN. Comput Netw 129:105–116

    Article  Google Scholar 

  30. 30.

    OpenDaylight Platform. https://www.opendaylight.org/

  31. 31.

    Floodlight project. http://www.projectfloodlight.org/floodlight/

  32. 32.

    ONOS-A new carrier-grade SDN network operating system designed for high availability, performance, scale-out. http://onosproject.org/

  33. 33.

    Amir Khorsandi Koohanestani (2017) Amin Ghalami Osgouei, Hossein Saidi, Ali Fanian, An analytical model for delay bound of OpenFlow based SDN using network calculus. J Netw Comput Appl 96:31–38

    Article  Google Scholar 

  34. 34.

    Khebbache Selma, Hadji Makhlouf, Zeghlache Djamal (2017) Virtualized network functions chaining and routing algorithms. Comput Netw 114:95–110

    Article  Google Scholar 

  35. 35.

    Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 2:1–4. https://doi.org/10.1109/mci.2006.329691

    Google Scholar 

  36. 36.

    Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1:53–66. https://doi.org/10.1109/4235.585892

    Article  Google Scholar 

  37. 37.

    Engelbrecht AP (2007) Computational intelligence: an introduction. Wiley, Hoboken

    Google Scholar 

  38. 38.

    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  39. 39.

    Sheikholeslami R, Kaveh A (2013) A survey of chaos embedded meta-heuristic algorithms. Int J Optim Civil Eng 3:617–633

    Google Scholar 

  40. 40.

    Addis B, Gao M, Carello G (2018) On the complexity of a virtual network function placement and routing problem. Electron Notes Discret Math 69:197–204. https://doi.org/10.1016/j.endm.2018.07.026

    MathSciNet  Article  Google Scholar 

  41. 41.

    Zheng WM (1994) Kneading plane of the circle map. Chaos Solitons Fractals 4:1221–1233. https://doi.org/10.1016/0960-0779(94)90033-7

    Article  MATH  Google Scholar 

  42. 42.

    Gomes RL, Bittencourt LF, Madeira ERM, Cerqueira E, Gerla M (2016) Bandwidth-aware allocation of resilient virtual software defined networks. Comput Netw 100:179–194. https://doi.org/10.1016/j.comnet.2016.02.024

    Article  Google Scholar 

  43. 43.

    Abedifar V, Eshghi M, Mirjalili S, Mirjalili SM (2013) An optimized virtual network mapping using PSO in cloud computing, In: 21st IEEE Iranian Conference on Electrical Engineering (ICEE)., pp. 1–6. https://doi.org/10.1109/iraniancee.2013.6599723

  44. 44.

    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks. https://doi.org/10.1109/icnn.1995.488968

Download references

Author information



Corresponding author

Correspondence to Saeed Sharifian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farshin, A., Sharifian, S. A modified knowledge-based ant colony algorithm for virtual machine placement and simultaneous routing of NFV in distributed cloud architecture. J Supercomput 75, 5520–5550 (2019). https://doi.org/10.1007/s11227-019-02804-x

Download citation


  • VM placement
  • Resource allocation
  • Placement and routing
  • SDN
  • NFV
  • Metaheuristic algorithms
  • Knowledge-based ACS