Intelligent fault detection using raw vibration signals via dilated convolutional neural networks

  • Mohammad Azam Khan
  • Yong-Hwa KimEmail author
  • Jaegul Choo


Fault detection and diagnosis is critical to improve the reliability and availability in induction motors (IMs). Machine learning and deep learning techniques have been widely used in induction motor fault detection and diagnosis. In this paper, we propose a new deep learning model based on a dilated convolutional neural network (D-CNN) for detecting bearing faults in IMs. The proposed model works directly on raw vibration signals without any hand-crafted feature extraction process. Our model can incorporate global context without losing important local information by stacking dilated convolutions with an increasing width. Numerical results show that the proposed D-CNN is not only capable of classifying normal signals perfectly but also can achieve higher accuracy than conventional techniques under noisy environments.


Dilated convolution Intelligent fault detection Vibration signals Deep neural networks Convolutional neural networks 



This research was in part supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017R1C1B1012259) and in part supported by Korea Electric Power Corporation (Grant No. R17XA05-22).


  1. 1.
    Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Software available from
  2. 2.
    Bellini A, Filippetti F, Tassoni C, Capolino GA (2008) Advances in diagnostic techniques for induction machines. IEEE Trans Ind Electron 55(12):4109–4126. CrossRefGoogle Scholar
  3. 3.
    Benbouzid MEH (2000) A review of induction motors signature analysis as a medium for faults detection. IEEE Trans Ind Electron 47(5):984–993. CrossRefGoogle Scholar
  4. 4.
    Bianchini C, Immovilli F, Cocconcelli M, Rubini R, Bellini A (2011) Fault detection of linear bearings in brushless ac linear motors by vibration analysis. IEEE Trans Ind Electron 58(5):1684–1694. CrossRefGoogle Scholar
  5. 5.
    Bouzida A, Touhami O, Ibtiouen R, Belouchrani A, Fadel M, Rezzoug A (2011) Fault diagnosis in industrial induction machines through discrete wavelet transform. IEEE Trans Ind Electron 58(9):4385–4395. CrossRefGoogle Scholar
  6. 6.
    Cha YJ, Choi W, Bykztrk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput Aided Civ Infrastruct Eng 32(5):361–378. CrossRefGoogle Scholar
  7. 7.
    Chen X, Sun L, Zhu H, Zhen Y, Chen H (2012) Application of internet of things in power-line monitoring. In: 2012 International Conference on Cyber-enabled Distributed Computing and Knowledge Discovery. IEEE.
  8. 8.
    Chollet F et al (2015) Keras. Accessed 30 Aug 2018
  9. 9.
    Dou W, Li Y (2018) A fault-tolerant computing method for xdraw parallel algorithm. J Supercomput 74(6):2776–2800. CrossRefGoogle Scholar
  10. 10.
    Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159.
  11. 11.
    Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118. CrossRefGoogle Scholar
  12. 12.
    Hwang DH, Youn YW, Sun JH, Choi KH, Lee JH, Kim YH (2015) Support vector machine based bearing fault diagnosis for induction motors using vibration signals. J Electr Eng Technol 10(4):1558–1565. CrossRefGoogle Scholar
  13. 13.
    Karvelis P, Georgoulas G, Tsoumas IP, Antonino-Daviu JA, Climente-Alarcn V, Stylios CD (2015) A symbolic representation approach for the diagnosis of broken rotor bars in induction motors. IEEE Trans Ind Inform 11(5):1028–1037. CrossRefGoogle Scholar
  14. 14.
    Khan MA, Kim Y, Choo J (2018) Intelligent fault detection via dilated convolutional neural networks. In: 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), pp 729–731.
  15. 15.
    Kia SH, Henao H, Capolino GA (2007) A high-resolution frequency estimation method for three-phase induction machine fault detection. IEEE Trans Ind Electron 54(4):2305–2314. CrossRefGoogle Scholar
  16. 16.
    Kim J, Lee W, Song JJ, Lee SB (2017) Optimized combinatorial clustering for stochastic processes. Clust Comput 20(2):1135–1148. CrossRefGoogle Scholar
  17. 17.
    Kim YH, Youn YW, Hwang DH, Sun JH, Kang DS (2013) High-resolution parameter estimation method to identify broken rotor bar faults in induction motors. IEEE Trans Ind Electron 60(9):4103–4117. CrossRefGoogle Scholar
  18. 18.
    Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. CoRR, arXiv:1412.6980
  19. 19.
    Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems—Volume 1, NIPS’12, pp 1097–1105. Curran Associates Inc., USA.
  20. 20.
    LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. CrossRefGoogle Scholar
  21. 21.
    Li B, Chow MY, Tipsuwan Y, Hung JC (2000) Neural-network-based motor rolling bearing fault diagnosis. IEEE Trans Ind Electron 47(5):1060–1069. CrossRefGoogle Scholar
  22. 22.
    Li C, Zhang W, Peng G, Liu S (2018) Bearing fault diagnosis using fully-connected winner-take-all autoencoder. IEEE Access 6:6103–6115. CrossRefGoogle Scholar
  23. 23.
    Lou X, Loparo KA (2004) Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech Syst Signal Process 18(5):1077–1095.
  24. 24.
    Nandi S, Toliyat HA, Li X (2005) Condition monitoring and fault diagnosis of electrical motors-a review. IEEE Trans Energy Convers 20(4):719–729. CrossRefGoogle Scholar
  25. 25.
    v. d. Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: a generative model for raw audio. Arxiv arXiv:1609.03499
  26. 26.
    Oquab M, Bottou L, Laptev I, Sivic J (2014) Learning and transferring mid-level image representations using convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE.
  27. 27.
    Riera-Guasp M, Antonino-Daviu JA, Capolino GA (2015) Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: State of the art. IEEE Trans Ind Electron 62(3):1746–1759. CrossRefGoogle Scholar
  28. 28.
    Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958.
  29. 29.
    Strubell E, Verga P, Belanger D, McCallum A (2017) Fast and accurate sequence labeling with iterated dilated convolutions. arXiv:1702.02098
  30. 30.
    Widodo A, Yang BS (2007) Support vector machine in machine condition monitoring and fault diagnosis. Mech Syst Signal Process 21(6):2560–2574.
  31. 31.
    Yong B, Zhang G, Chen H, Zhou Q (2016) Intelligent monitor system based on cloud and convolutional neural networks. J Supercomput 73(7):3260–3276. CrossRefGoogle Scholar
  32. 32.
    Yu F, Koltun V (2016) Multiscale context aggregation by dilated convolutions. In: Proceedings of the International Conference on Learning Representations (ICLR)Google Scholar
  33. 33.
    Yu Z, Li T, Luo G, Fujita H, Yu N, Pan Y (2018) Convolutional networks with cross-layer neurons for image recognition. Inf Sci 433–434:241–254. MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zeiler MD (2012) Adadelta: an adaptive learning rate method. CoRR, arXiv:1212.5701
  35. 35.
    Zhang W, Li C, Peng G, Chen Y, Zhang Z (2018) A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech Syst Signal Process 100:439–453. CrossRefGoogle Scholar
  36. 36.
    Zhang W, Peng G, Li C, Chen Y, Zhang Z (2017) A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals. Sensors 17(3):425. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Azam Khan
    • 1
  • Yong-Hwa Kim
    • 2
    Email author
  • Jaegul Choo
    • 1
  1. 1.Korea UniversitySeoulSouth Korea
  2. 2.Myongji UniversityYonginSouth Korea

Personalised recommendations