The Journal of Supercomputing

, Volume 75, Issue 4, pp 2106–2125 | Cite as

Design and analysis of efficient QCA reversible adders

  • Sara HashemiEmail author
  • Mostafa Rahimi Azghadi
  • Keivan Navi


Quantum-dot cellular automata (QCA) as an emerging nanotechnology are envisioned to overcome the scaling and the heat dissipation issues of the current CMOS technology. In a QCA structure, information destruction plays an essential role in the overall heat dissipation, and in turn in the power consumption of the system. Therefore, reversible logic, which significantly controls the information flow of the system, is deemed suitable to achieve ultra-low-power structures. In order to benefit from the opportunities QCA and reversible logic provide, in this paper, we first review and implement prior reversible full-adder art in QCA. We then propose a novel reversible design based on three- and five-input majority gates, and a robust one-layer crossover scheme. The new full-adder significantly advances previous designs in terms of the optimization metrics, namely cell count, area, and delay. The proposed efficient full-adder is then used to design reversible ripple-carry adders (RCAs) with different sizes (i.e., 4, 8, and 16 bits). It is demonstrated that the new RCAs lead to 33% less garbage outputs, which can be essential in terms of lowering power consumption. This along with the achieved improvements in area, complexity, and delay introduces an ultra-efficient reversible QCA adder that can be beneficial in developing future computer arithmetic circuits and architectures.


Reversible computing Quantum-dot cellular automata (QCA) Full-adder Ripple-carry adder One-layer crossover scheme Five-input majority gate 


  1. 1.
    Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17:525–532MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Landauer R (1961) Irreversibility and heat generation in the computational process. IBM J Res Dev 5:183–191CrossRefzbMATHGoogle Scholar
  3. 3.
    Heikalabad SR, Asfestani MN, Hosseinzadeh M (2018) A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J Supercomput 74:1994–2005CrossRefGoogle Scholar
  4. 4.
    Hänninen I, Takala J (2010) Binary adders on quantum-dot cellular automata. J Signal Process Syst 58:87–103. CrossRefGoogle Scholar
  5. 5.
    Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys Am Inst Phys 75:1818–1824CrossRefGoogle Scholar
  6. 6.
    Wang W, Walus K, Jullien GA (2003) Quantum-dot cellular automata adders. In: Proceedings of IEEE Conference on Nanotechnology, pp 461–464Google Scholar
  7. 7.
    Pudi V, Sridharan K (2012) Low complexity design of ripple carry and Brent-Kung adders in QCA. IEEE Trans Nanotechnol 11:105–119CrossRefGoogle Scholar
  8. 8.
    Rahimi Azghadi M, Kavehei O, Navi K (2007) A novel design for quantum-dot cellular automata cells and full-adders. J Appl Sci 7:3460–3468CrossRefGoogle Scholar
  9. 9.
    Hashemi S, Navi K (2015) A novel robust QCA full-adder. Procedia Mater Sci 11:376–380CrossRefGoogle Scholar
  10. 10.
    Mohammadi M, Mohammadi M, Gorgin S (2016) An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron J 50:35–43CrossRefGoogle Scholar
  11. 11.
    Sayedsalehi S, Azghadi MR, Angizi S, Navi K (2015) Restoring and non-restoring array divider designs in quantum-dot cellular automata. Inf Sci 31:86–101MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ahmadpour SS, Mosleh MJ (2018) A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J Supercomput. Google Scholar
  13. 13.
    Hashemi S, Navi K (2012) New robust QCA D flip flop and memory structures. Microelectron J 43(12):929–940CrossRefGoogle Scholar
  14. 14.
    Vetteth A, Walus K, Dimitrov VS, Jullien GA (2003) Quantum-dot cellular automata of flip-flops. ATIPS Laboratory 2500 University Drive, N.W., Calgary, Alberta, Canada T2 N1N4Google Scholar
  15. 15.
    Yang X, Cai L, Zhao X (2010) Low power dual-edge triggered flip-flop structure in quantum dot cellular automata. Electron Lett 46:825–826CrossRefGoogle Scholar
  16. 16.
    Murphy SF, Ottavi M, Frank M, DeBenedictis E (2006) On the design of reversible QDCA systems. Sandia National Laboratories, Albuquerque, NM, Tech. Rep. SAND2006-5990Google Scholar
  17. 17.
    Thapliyal H, Ranganathan N (2010) Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans Nanotechnol 9(1):62–69CrossRefGoogle Scholar
  18. 18.
    Thapliyal H, Ranganathan N, Kotiyal S (2013) Design of testable reversible sequential circuits. IEEE Trans Very Large Scale Integr (VLSI) Syst 21(7):1201–1209CrossRefGoogle Scholar
  19. 19.
    Shah NA, Khanday FA, Iqbal J (2012) Quantum-dot cellular automata (QCA) design of multi-function reversible logic gate. Commun Inf Sci Manag Eng (CISME) 2(4):8–18Google Scholar
  20. 20.
    Hashemi S, Navi K (2014) Reversible multiplexer design in quantum-dot cellular automata. Quantum Matter (ASP) 6:523–528CrossRefGoogle Scholar
  21. 21.
    Kianpour M, Sabbaghi-Nadooshan R (2017) Novel 8-bit reversible full-adder/subtractor using a QCA reversible gate. J Comput Electron 16:459–472CrossRefGoogle Scholar
  22. 22.
    Taherkhani E, Moaiyeri MH, Angizi S (2017) Design of an ultra-efficient reversible full adder-subtractor in quantum-dot cellular automata. Optik Int J Light Electron Opt 142:557–563CrossRefGoogle Scholar
  23. 23.
    Al-Shafi MA, Islam MS, Newaz Bahar A (2015) A review on reversible logic gates and it’s QCA implementation. IJCA 128(2).
  24. 24.
    Ma X, Huang J, Metra C, Lombardi F (2008) Reversible gates and testability of one dimensional arrays of molecular QCA. J Electron Test 24(1):297–311CrossRefGoogle Scholar
  25. 25.
    Hashemi S, Navi K (2014) Designing quantum-dot cellular automata circuits using a robust one layer crossover scheme. IET J Eng. Google Scholar
  26. 26.
    Kim K, Wu K, Karri R (2007) The robust QCA adder designs using composable QCA building blocks. IEEE Trans Comput Aided Des Integr Circuits Syst 26:176–183CrossRefGoogle Scholar
  27. 27.
    Kim K, Wu K, Karri R (2005) Towards designing robust QCA architectures in the presence of sneak noise paths. In: Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, pp 1214–1219Google Scholar
  28. 28.
    Devadoss R, Paul K, Balakrishnan M (2009) Coplanar QCA crossovers. IET Electron Lett 45:1234–1235CrossRefGoogle Scholar
  29. 29.
    Tougaw D, Khatun M (2013) A scalable signal distribution network for quantum-dot cellular automata. IEEE Trans Nanotechnol 12:215–224CrossRefGoogle Scholar
  30. 30.
    Shin SH, Jeon JC, Yoo KY (2013) Wire-crossing technique on quantum-dot cellular automata. In: Second International Conference Next Generation Computer and Information Technology (NGCIT), pp 52–57Google Scholar
  31. 31.
    Toffoli T (1980) Reversible computing. In: Proceedings of the 7th Colloquium on Automata, Languages and Programming. Springer, London, UK, pp 632–644Google Scholar
  32. 32.
    Peres A (1985) Reversible logic and quantum computers. Phys Rev A Gen Phys 32(6):3266–3276MathSciNetCrossRefGoogle Scholar
  33. 33.
    Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21:219–253MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Smolin JA, Divincenzo DP (1996) Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys Rev A 53:2855–2856CrossRefGoogle Scholar
  35. 35.
    Thapliyal H, Arabnia HR, Srinivas MB (2009) Efficient reversible logic design of BCD subtractors. In: Transactions on Computational Science Journal, Vol. III. Springer, LNCS 5300, pp 99–121Google Scholar
  36. 36.
    Thapliyal H, Arabnia HR, Bajpai R, Sharma KK (2007) Combined integer and variable precision (CIVP) floating point multiplication architecture for FPGAs. In: Proceedings of 2007 International Conference on Parallel and Distributed Processing Techniques and Applications; PDPTA’07, Vol 2207, USA, pp 449–450Google Scholar
  37. 37.
    Thapliyal H, Arabnia HR (2006) Reversible programmable logic array (RPLA) using Fredkin and Feynman gates for industrial electronics and applications. In: Proceedings of 2006 International Conference on Computer Design and Conference on Computing in Nanotechnology (CDES’06: June 26-29, 2016; Las Vegas, USA), pp 70–74Google Scholar
  38. 38.
    Thapliyal H, Srinivas MB, Arabnia HR (2005) Reversible logic synthesis of half, full and parallel subtractors. In: Proceedings of 2005 international conference on embedded systems and applications, ESA’05, June, Las Vegas, pp 165–172Google Scholar
  39. 39.
    Thapliyal H, Jayashree HV, Nagamani AN, Arabnia HR (2013) Progress in reversible processor design: a novel methodology for reversible carry look-ahead adder. In: Gavrilova ML, Tan CJK (eds) Transactions in computational science (Springer), XVII, LNCS 7420. Springer, Berlin, pp 73–97Google Scholar
  40. 40.
    Thapliyal H, Ranganathan N (2010) Design of reversible sequential circuits optimizing quantum cost. Delay Garbage Outputs JETC 6(4):14–31Google Scholar
  41. 41.
    Azad Khan MMH (2002) Design of full-adder with reversible gates. In: International Conference on Computer and Information Technology, Dhaka, pp 515–519Google Scholar
  42. 42.
    Khlopotine AB, Perkowski M, Kerntopf P (2002) Reversible logic synthesis by iterative composition. In: Proceedings of IWLS, 2002, pp 261–266Google Scholar
  43. 43.
    Bruce JW, Thornton MA, Shivakumaraiah L, Kokate PS, Li X (2002) Efficient adder circuits based on a conservative reversible logic gate. In: IEEE Computer Society Annual Symposium on VLSI, pp 74–79Google Scholar
  44. 44.
    Babu HH, Islam R, Chowdhury AR, Chowdhury SMA (2003) On the realization of reversible full-adder circuit. In: International Conference on Computer and Information Technology, Dhaka, Bangladesh, pp 880–883Google Scholar
  45. 45.
    Babu HMH, Islam MR, Chowdhury AR, Chowdhury SMA (2003) Reversible logic synthesis for minimization of full adder circuit. In Proceedings of the Euro Micro Symposium on Digital System Design (DSD”03), Belek-Antalya, Turkey, pp 50–54Google Scholar
  46. 46.
    Thapliyal H, Srinivas MB (2005) A novel reversible TSG gate and its application for designing reversible carry look-ahead and other adder architectures. In: Proceedings of the 10th Asia-Pacific conference on Advances in Computer Systems Architecture (ACSAC”05), pp 805–817Google Scholar
  47. 47.
    Thapliyal H, Srinivas MB (2005) Novel design and reversible logic synthesis of multiplexer based full adder and multipliers. In: 48th Midwest Symposium on Circuits and Systems, vol 2, pp 1593–1596Google Scholar
  48. 48.
    Islam S, Islam R (2005) Minimization of reversible adder circuits. Asian J Inf Technol 4(12):1146–1151MathSciNetGoogle Scholar
  49. 49.
    Babu HMH, Chowdhury AR (2006) Design of a compact reversible binary coded decimal adder circuit. J Syst Archit 52:272–282CrossRefGoogle Scholar
  50. 50.
    Thapliyal H, Vinod AP (2007) Designing efficient online testable reversible adders with new reversible gate. In: Proceedings of ISCAS 2007, New Orleans, USA, pp 1085–1088Google Scholar
  51. 51.
    Haghparasat M, Navi K (2008) A novel reversible full adder circuit for nanotechnology based systems. J Appl Sci 7:3995–4000Google Scholar
  52. 52.
    Haghparast M, Navi K (2008) A novel reversible BCD adder for nanotechnology based systems. Am J Appl Sci 5(3):282–288CrossRefGoogle Scholar
  53. 53.
    Saiful Islam M (2009) A novel quantum cost efficient reversible full adder gate in nanotechnology.
  54. 54.
    Ni L, Guan Z, Zhu W (2010) A general method of constructing the reversible full-adder. In: Third International Symposium on Intelligent Information Technology and Security Informatics (IITSI), pp 109–113Google Scholar
  55. 55.
    Sengupta D, Sultana M, Chaudhuri A (2011) Realization of a novel reversible SCG gate and its application for designing parallel adder/subtractor and match logic. Int J Comput Appl 31:30–35Google Scholar
  56. 56.
    AnanthaLakshmi AV, Sudha GF (2013) Design of a novel reversible full adder and reversible full subtractor. Adv Intell Syst Comput 178:623–632Google Scholar
  57. 57.
    Kunalan D, Cheong CL, Chau CF, Ghazali AB (2014) Design of a 4-bit adder using reversible logic in quantum-dot cellular automata (QCA). In: Proceedings of IEEE-ICSE2014, Kuala LumpurGoogle Scholar
  58. 58.
    Mohammadi Z, Mohammadi M (2014) Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf Process 13:2127–2147MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sara Hashemi
    • 1
    Email author
  • Mostafa Rahimi Azghadi
    • 2
  • Keivan Navi
    • 3
  1. 1.Nanotechnology and Quantum Computing Lab.Shahid Beheshti University, G.C.TehranIran
  2. 2.College of Science and EngineeringJames Cook UniversityTownsvilleAustralia
  3. 3.Shahid Beheshti UniversityVelenjak, TehranIran

Personalised recommendations