Secure CLS and CL-AS schemes designed for VANETs

  • Pankaj Kumar
  • Saru Kumari
  • Vishnu Sharma
  • Xiong Li
  • Arun Kumar Sangaiah
  • SK Hafizul Islam


Vehicular Ad hoc Network (VANET) is a part of intelligent transport system facing the problem of limited bandwidth. Certificateless aggregate signature (CL-AS) scheme gives an efficient solution of solving the limitation of bandwidth and also reduces the computation overhead. Aggregate signature (AS) allows integrating n number of individual signatures on n distinct messages from n distinct users into one single short signature where any signer out of n signers can generate the signature. We propose efficient CLS and CL-AS schemes for VANET. We demonstrate that our CL-AS scheme preserves the conditional privacy, in which message generated by a vehicle is mapped to a distinct pseudo-identity. The security of the proposed scheme is proved in the random oracle model against adaptive chosen-message attacks with the hardness of computational Diffie–Hellman Problem.


Digital signature Certificateless aggregate signature Random oracle model 


  1. 1.
    Diffie W, Hellman ME (1976) New directions in cryptography. IEEE Trans Inf Theory 22(6):644–654MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Shamir A (1984) Identity based cryptosystems and signature schemes. In: Blakley GR, Chaum D (eds) Crypto’84, LNCS 196. Springer-Verlag, Santa Barbara, pp 47–53Google Scholar
  3. 3.
    Al-Riyami S, Paterson K (2003) Certificateless public key cryptography. Asiacrypt’ 03, LNCS 2894. Springer, Berlin, pp 452–473zbMATHGoogle Scholar
  4. 4.
    Boneh D, Gentry C, Lynn B, Shacham H (2003) Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham E (ed) EUROCRYPT 2003, LNCS 2656. Springer-Verlag, Warsaw, pp 416–432Google Scholar
  5. 5.
    Jayo UH, Mmmu ASK, Iglesia ID Reliable Communication in cooperative ad hoc networks. Chapter 6, 213–244. doi:
  6. 6.
    Huang X, Susilo W, Mu Y, Zhang F (2005) On the security of a certificateless signature scheme. In: Proceedings of the CANS, LNCS, 3810, pp 13–15Google Scholar
  7. 7.
    Yum DH, Lee PJ (2004) Generic construction of certificateless signature. Information Security and Privacy, LNCS 3108, pp 200–211.
  8. 8.
    Hu B, Wong D, Zhang Z, Deng X (2006) Key replacement attack against a generic construction of certificateless signature. In: Proceedings of the ACISP’06, LNCS, 4058, pp 235–346Google Scholar
  9. 9.
    Gorantla M, Saxena A (2005) An Efficient Certificateless Signature Scheme. Comput Intell Secur LNCS 3802:110–116. CrossRefGoogle Scholar
  10. 10.
    Cao X, Paterson KG, Kou W (2006) An attack on a certificateless signature scheme. Report 2006/367, Cryptology, ePrint ArchiveGoogle Scholar
  11. 11.
    Zhang L, Zhang F (2009) A new certificateless aggregate signature scheme. Comput Commun 32(6):1079–1085MathSciNetCrossRefGoogle Scholar
  12. 12.
    Shim KA (2015) Security models for certificateless signature schemes revisited. Inf Sci 296:315–321MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Xiong H, Guan Z, Chen Z, Li F (2013) An efficient certificateless aggregate signature with constant pairing computation. Inf Sci 219:225–235MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Xiong H, Wu Q, Chen Z (2011) Strong security enabled certificateless aggregate signatures applicable to mobile computation. In: Third International Conference on Intelligent Networking and Collaborative Systems, Fukuoka, Japan, pp 92–99.
  15. 15.
    Zhang F, Shen L, Wu G (2014) Notes on the security of certificateless aggregate signature schemes. Inf Sci 287:32–37MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tu H, He D, Huang B (2014) Reattack of a certificateless aggregate signature scheme with constant pairing computations. Sci World J 2014:10. Google Scholar
  17. 17.
    Cheng L, Wen Q, Jin Z, Zhang H, Zhou L (2015) Cryptanalysis and improvement of a certificateless aggregate signature scheme. Inf Sci 295:337–346MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    He D, Tian M, Chen J (2014) Insecurity of an efficient certificateless aggregate signature with constant computations. Inf Sci 268:458–462MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hu BC, Wong DS, Zhang Z, Deng X (2007) Certificateless signature: a new security model and an improved generic construction. Des Codes Cryptogr 42(2):109–126MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Deng J, Xu C, Wu H, Dong L (2016) A new certificateless signature with enhanced security and aggregation version. Concurr Comput Pract Exp 28:1124–1133CrossRefGoogle Scholar
  21. 21.
    Du H, Wen Q (2009) Efficient and provably-secure certificateless short signature scheme from bilinear pairings. Comput Stand Interfaces 31(2):390–394CrossRefGoogle Scholar
  22. 22.
    Choi KY, Park JH, Hwang JY, Lee DH (2007) Efficient certificateless signature schemes. Appl Cryptogr Netw Secur 4521:443–458zbMATHGoogle Scholar
  23. 23.
    Zhang L, Qin B, Wu Q, Zhang F (2010) Efficient many-to-one authentication with certificateless aggregate signatures. Comput Netw 54(14):2482–2491CrossRefzbMATHGoogle Scholar
  24. 24.
    Kumar P, Saru K, Sharma V, Sangaiah AK, Wei J, Li X (2017) A certificateless aggregate signature scheme for healthcare wireless sensor network. Sustain Comput Inform Syst. Google Scholar
  25. 25.
    He D, Zeadally S (2015) Authentication protocol for an ambient assisted living system. IEEE Commun Mag 53(1):71–77. CrossRefGoogle Scholar
  26. 26.
    He D, Wang D (2015) Robust biometrics-based authentication scheme for multiserver environment. IEEE Syst J 9(3):816–823CrossRefGoogle Scholar
  27. 27.
    He D, Kumar N, Shen H, Lee HJ (2016) One to many authentication for access control in mobile pay TV system. Sci China Inf Sci 59(5):052108MathSciNetCrossRefGoogle Scholar
  28. 28.
    Martinelli F, Mercaldo F, Orlando A, Nardone V, Santone A, Sangaiah AK (2018) Human behavior characterization for driving style recognition in vehicle system. Comput Electr Eng. Google Scholar
  29. 29.
    Chahal M, Harit S, Mishra KK, Sangaiah AK, Zheng Z (2017) A Survey on software-defined networking in vehicular ad hoc networks: challenges, applications and use cases. Sustain Cities Soc 35:830–840. CrossRefGoogle Scholar
  30. 30.
    Chen C, Min X, Qiu TQ, Liu L, Sangaiah AK (2017) Latency estimation based on traffic density for video streaming in the internet of vehicles. Comput Commun 111:176–186. CrossRefGoogle Scholar
  31. 31.
    Chen C, Liu X, Tie Q, Sangaiah AK (2017) A short-term traffic prediction model in the vehicular cyber–physical systems. Future Gener Comput Syst. Google Scholar
  32. 32.
    Zhang C, Lu R, Lin X, Ho PH, Shen X (2008) An efficient identity-based batch verification scheme for vehicular sensor networks. In: Proceedings of the IEEE INFOCOM, pp 816–824.
  33. 33.
    Shim KA (2012) CPAS: an efficient conditional privacy-preserving authentication scheme for vehicular sensor networks. IEEE Trans Vehic Technol 61(4):1874–1883MathSciNetCrossRefGoogle Scholar
  34. 34.
    Gong Z, Long Y, Hong X, Chen K (2007) Two certificateless aggregate signatures from bilinear maps. In: Proceedings of the IEEE SNPD, 3, pp 188–193.
  35. 35.
    Hubaux JP, Capkun S, Luo J (2004) The security and privacy of smart vehicles. IEEE Secur Priv 2(3):49–55CrossRefGoogle Scholar
  36. 36.
    Raya M, Hubaux JP (2007) Securing vehicular ad hoc networks. J Comput Secur 15(1):39–68CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Pankaj Kumar
    • 1
  • Saru Kumari
    • 2
  • Vishnu Sharma
    • 3
  • Xiong Li
    • 4
  • Arun Kumar Sangaiah
    • 5
  • SK Hafizul Islam
    • 6
  1. 1.School of Computer Science and EngineeringGalgotias UniversityNoidaIndia
  2. 2.Department of MathematicsCh. Charan Singh UniversityMeerutIndia
  3. 3.Department of Computer ScienceGalgotias College of Engineering and Technology UniversityNoidaIndia
  4. 4.School of Computer Science and EngineeringHunan University of Science and TechnologyXiangtanChina
  5. 5.School of Computing Science and EngineeringVIT UniversityVelloreIndia
  6. 6.Department of Computer Science and EngineeringIndian Institute of Information Technology KalyaniKalyaniIndia

Personalised recommendations