Skip to main content
Log in

The panpositionable panconnectedness of crossed cubes

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In many parallel and distributed multiprocessor systems, the processors are connected based on different types of interconnection networks. The topological structure of an interconnection network is typically modeled as a graph. Among the many kinds of network topologies, the crossed cube is one of the most popular. In this paper, we investigate the panpositionable panconnectedness problem with respect to the crossed cube. A graph G is r-panpositionably panconnected if for any three distinct vertices x, y, z of G and for any integer \(l_1\) satisfying \(r \le l_1 \le |V(G)| - r - 1\), there exists a path \(P = [x, P_1, y, P_2, z]\) in G such that (i) \(P_1\) joins x and y with \(l(P_1) = l_1\) and (ii) \(P_2\) joins y and z with \(l(P_2) = l_2\) for any integer \(l_2\) satisfying \(r \le l_2 \le |V(G)| - l_1 - 1\), where |V(G)| is the total number of vertices in G and \(l(P_1)\) (respectively, \(l(P_2)\)) is the length of path \(P_1\) (respectively, \(P_2\)). By mathematical induction, we demonstrate that the n-dimensional crossed cube \(CQ_n\) is n-panpositionably panconnected. This result indicates that the path embedding of joining x and z with a mediate vertex y in \(CQ_n\) is extremely flexible. Moreover, applying our result, crossed cube problems such as panpositionable pancyclicity, panpositionably Hamiltonian connectedness, and panpositionable Hamiltonicity can be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alavi Y, Williamson JE (1975) Panconnected graphs. Stud Sci Math Hung 10:19–22

    MathSciNet  MATH  Google Scholar 

  2. Arabnia HR, Oliver MA (1987) A transputer network for the arbitrary rotation of digitised images. Comput J 30:425–432

    Article  Google Scholar 

  3. Arabnia HR, Oliver MA (1989) A transputer network for fast operations on digitised images. Int J Eurograph Assoc (Computer Graphics Forum) 8:3–11

    Article  Google Scholar 

  4. Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and its implementation using a multi-stage switching box. In: Proceedings of the 7th Annual International High Performance Computing Conference. The 1993 High Performance Computing: New Horizons Supercomputing Symposium, Calgary, pp 349–357

  5. Bhandarkar SM, Arabnia HR (1995) The hough transform on a reconfigurable multi-ring network. J Parallel Distrib Comput 24:107–114

    Article  Google Scholar 

  6. Bhandarkar SM, Arabnia HR, Smith JW (1995) A reconfigurable architecture for image processing and computer vision. Int J Pattern Recognit Artif Intell 9:201–229

    Article  Google Scholar 

  7. Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor: theoretical properties and algorithms. Parallel Comput 21:1783–1805

    Article  Google Scholar 

  8. Bondy JA (1971) Pancyclic graphs. J Comb Theory Ser B 11:80–84

    Article  MATH  Google Scholar 

  9. Chen H-C (2017) A data verification report on the panpositionable panconnectedness of crossed cubes. http://mis.web2.ncut.edu.tw/ezfiles/19/1019/img/1258/CHENHC2.htm. Accessed 1 July 2017

  10. Chen H-C, Kung T-L, Hsu L-H (2011) Embedding a Hamiltonian cycle in the crossed cube with two required vertices in the fixed positions. Appl Math Comput 217:10058–10065

    MathSciNet  MATH  Google Scholar 

  11. Chen H-C, Kung T-L, Hsu L-Y (2015) 2-Disjoint-path-coverable panconnectedness of crossed cubes. J Supercomput 71:2767–2782

    Article  Google Scholar 

  12. Chen H-C, Kung T-L, Zou Y-H, Mao H-W (2015) The fault-tolerant Hamiltonian problems of crossed cubes with path faults. IEICE Trans Inf Syst E98–D:2116–2122

    Article  Google Scholar 

  13. Chen H-C, Zou Y-H, Wang Y-L, Pai K-J (2017) A note on path embedding in crossed cubes with faulty vertices. Inf Process Lett 121:34–38

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen X-B (2013) The 2-path-bipanconnectivity of hypercubes. Inf Sci 239:283–293

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen X-B (2014) Panconnectivity and edge-pancyclicity of multidimensional torus networks. Discrete Appl Math 178:33–45

    Article  MathSciNet  MATH  Google Scholar 

  16. Choudum SA, Sunitha V (2002) Augmented cubes. Networks 40:71–84

    Article  MathSciNet  MATH  Google Scholar 

  17. Efe K (1992) The crossed cube architecture for parallel computing. IEEE Trans Parallel Distrib Syst 3:513–524

    Article  Google Scholar 

  18. Fan J, Jia X, Lin X (2006) Complete path embeddings in crossed cubes. Inf Sci 176:3332–3346

    Article  MathSciNet  MATH  Google Scholar 

  19. Fan J, Lin X, Jia X (2005) Node-pancyclicity and edge-pancyclicity of crossed cubes. Inf Process Lett 93:133–138

    Article  MathSciNet  MATH  Google Scholar 

  20. Fan J, Lin X, Jia X (2005) Optimal path embeddings in crossed cubes. IEEE Trans Parallel Distrib Syst 16:1190–1200

    Article  Google Scholar 

  21. Golumbic MC (1980) Algorithmic graph theory and perfect graphs. Academic Press, New York

    MATH  Google Scholar 

  22. Huang W-T, Chuang Y-C, Tan JJM, Hsu L-H (2002) On the fault-tolerant hamiltonicity of faulty crossed cubes. IEICE Trans Fundam Electron Commun Comput Sci E85–A:1359–1370

    Google Scholar 

  23. Hsu L-H, Lin C-K (2008) Graph theory and interconnection networks. CRC Press, Boca Raton

    MATH  Google Scholar 

  24. Kulasinghe P, Bettayeb S (1995) Embedding binary trees into crossed cubes. IEEE Trans Comput 44:923–929

    Article  MATH  Google Scholar 

  25. Kung T-L (2013) Flexible cycle embedding in the locally twisted cube with nodes positioned at any prescribed distance. Inf Sci 242:92–102

    Article  MathSciNet  MATH  Google Scholar 

  26. Kung T-L, Teng Y-H, Hsu L-H (2010) The panpositionable panconnectedness of augmented cubes. Inf Sci 180:3781–3793

    Article  MathSciNet  MATH  Google Scholar 

  27. Lai P-L, Hsu H-C (2008) The two-equal-disjoint path cover problem of matching composition network. Inf Process Lett 107:18–23

    Article  MathSciNet  MATH  Google Scholar 

  28. Li J, Wang S, Yang Y (2014) Panconnectivity and pancyclicity of the 3-ary \(n\)-cube network under the path restrictions. Appl Math Comput 243:339–348

    MathSciNet  MATH  Google Scholar 

  29. Lin T-J, Hsieh S-Y, Juan JS-T (2012) Embedding cycles and paths in product networks and their applications to multiprocessor systems. IEEE Trans Parallel Distrib Syst 23:1081–1089

    Article  Google Scholar 

  30. Saad Y, Shultz MH (1988) Topological properties of hypercubes. IEEE Trans Comput 37:867–872

    Article  Google Scholar 

  31. Teng Y-H, Tan JJM, Hsu L-H (2008) Panpositionable hamiltonicity and panconnectivity of the arrangement graphs. Appl Math Comput 198:414–432

    MathSciNet  MATH  Google Scholar 

  32. Teng Y-H, Tan JJM, Hsu L-H (2007) Panpositionable hamiltonicity of the alternating group graphs. Networks 50:146–156

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang X, Evans DJ, Megson GM (2005) The locally twisted cubes. Int J Comput Math 82:401–413

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to the anonymous referees and the editor for their valuable suggestions for improving the clarity and style of this work. This work is supported in part by the Ministry of Science and Technology of the Republic of China under Contract MOST103-2221-E-167-022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hon-Chan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HC. The panpositionable panconnectedness of crossed cubes. J Supercomput 74, 2638–2655 (2018). https://doi.org/10.1007/s11227-018-2295-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-2295-8

Keywords

Navigation