Advertisement

The Journal of Supercomputing

, Volume 74, Issue 3, pp 1394–1417 | Cite as

An efficient implementation of pairing-based cryptography on MSP430 processor

  • Jihoon Kwon
  • Seog Chung Seo
  • Seokhie Hong
Article
  • 187 Downloads

Abstract

In this paper, we present a highly optimized implementation of \(\eta _T\) pairing on 16-bit MSP430 processor. Until now, TinyPBC provided the most optimized implementation of \(\eta _T\) pairing on sensor platforms. Although it is well optimized for finite field arithmetic, it is not optimized at an extension field arithmetic level. Moreover, since TinyPBC requires considerable amount of memory consumption, its usability is limited on a memory-constrained sensor platforms. We have focused on optimizing not only field arithmetic level but also extension field arithmetic level. In comparison with TinyPBC, the field reduction performance could be improved about 29.1% by our proposed method. We achieved 12.22% of performance improvement for extension field sparse multiplication. Our \(\eta _T\) pairing implementation on MSP430 computes single pairing in 1.22 s, and this result is 5.88% faster than TinyPBC. Furthermore, it requires 19.2% less memory than TinyPBC.

Keywords

Pairing-based cryptography MSP430 processor Efficient implementation Wireless sensor networks 

References

  1. 1.
    Adj G, Menezes A, Oliveira T, Rodríguez-Henríquez F (2013) Weakness of \({\mathbb{F}}_{3^{6 \cdot 509}}\) for discrete logarithm cryptography. In: International Conference on Pairing-Based Cryptography. Springer, New York, pp 20–44Google Scholar
  2. 2.
    Adj G, Menezes A, Oliveira T, Rodriguez-Henriquez F (2015) Weakness of \({\mathbb{F}}_{3^{6 \cdot 1429}}\) and \({\mathbb{F}}_{2^{4 \cdot 3041}}\) for discrete logarithm cryptography. Finite Fields Appl 32:148–170MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barbulescu R, Gaudry P, Joux A, Thomé E (2014) A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, New York, pp 1–16Google Scholar
  4. 4.
    Barreto PS, Galbraith SD, hÉigeartaigh CÓ, Scott M (2007) Efficient pairing computation on supersingular abelian varieties. Des Codes Cryptogr 42(3):239–271MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Barreto PS, Kim HY, Lynn B, Scott M (2002) Efficient algorithms for pairing-based cryptosystems. In: Annual International Cryptology Conference. Springer, New York, pp 354–369Google Scholar
  6. 6.
    Beuchat JL, Brisebarre N, Detrey J, Okamoto E, Rodríguez-Henríquez F (2008) A comparison between hardware accelerators for the modified tate pairing over \({\mathbb{F}}_{2^m}\) and \({\mathbb{F}}_{3^m}\). In: International Conference on Pairing-Based Cryptography. Springer, New York, pp 297–315Google Scholar
  7. 7.
    Boneh D, Boyen X, Shacham H (2004) Short group signatures. In: Annual International Cryptology Conference. Springer, New York, pp 41–55Google Scholar
  8. 8.
    Boneh D, Franklin M (2001) Identity-based encryption from the Weil pairing. In: Annual International Cryptology Conference. Springer, New York, pp 213–229Google Scholar
  9. 9.
    Duursma I, Lee HS (2003) Tate pairing implementation for hyperelliptic curves \(y^2= x^p-x+d\). In: International Conference on the Theory and Application of Cryptology and Information Security. Springer, New York, pp 111–123Google Scholar
  10. 10.
    Eschenauer L, Gligor VD (2002) A key-management scheme for distributed sensor networks. In: Proceedings of the 9th ACM Conference on Computer and Communications Security. ACM, pp 41–47Google Scholar
  11. 11.
    Goyal V, Pandey O, Sahai A, Waters B (2006) Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security. ACM, pp 89–98Google Scholar
  12. 12.
    Hankerson D, Menezes AJ, Vanstone S (2006) Guide to elliptic curve cryptography. Springer, New YorkMATHGoogle Scholar
  13. 13.
    Hess F, Smart NP, Vercauteren F (2006) The eta pairing revisited. IEEE Trans Inf Theory 52(10):4595–4602MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Karabutsa A, Ofman Y (1962) Multiplication of many-digital numbers by automatic computers. Dokl Akad Nauk SSSR 145(2):293–294Google Scholar
  15. 15.
    Lee E, Lee HS, Park CM (2009) Efficient and generalized pairing computation on abelian varieties. IEEE Trans Inf Theory 55(4):1793–1803MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Matsuda S, Kanayama N, Hess F, Okamoto E (2007) Optimised versions of the ate and twisted ate pairings. In: IMA International Conference on Cryptography and Coding. Springer, New York, pp 302–312Google Scholar
  17. 17.
    Oliveira L, Scott M, Lopez J, Dahab R, et al. (2008) TinyPBC: pairings for authenticated identity-based non-interactive key distribution in sensor networks. In: Proceedings of INSS 2008-5th International Conference on Networked Sensing SystemsGoogle Scholar
  18. 18.
    Oliveira LB, Aranha DF, Gouvêa CP, Scott M, Câmara DF, López J, Dahab R (2011) TinyPBC: pairings for authenticated identity-based non-interactive key distribution in sensor networks. Comput Commun 34(3):485–493CrossRefGoogle Scholar
  19. 19.
    Oliveira LB, Aranha DF, Morais E, Daguano F, López J, Dahab R (2007) TinyTate: computing the tate pairing in resource-constrained sensor nodes. In: Network Computing and Applications, 2007. NCA 2007. Sixth IEEE International Symposium on IEEE, pp 318–323Google Scholar
  20. 20.
    Perrig A, Szewczyk R, Tygar JD, Wen V, Culler DE (2002) SPINS: security protocols for sensor networks. Wirel Netw 8(5):521–534CrossRefMATHGoogle Scholar
  21. 21.
    Sahai A, Waters B (2005) Fuzzy identity-based encryption. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, New York, pp 457–473Google Scholar
  22. 22.
    Scott M (2007) Optimal irreducible polynomials for \(GF(2^m)\) arithmetic. IACR Cryptol ePrint Arch 2007:192Google Scholar
  23. 23.
    Shamir A (1984) Identity-based cryptosystems and signature schemes. In: Workshop on the Theory and Application of Cryptographic Techniques. Springer, New York, pp 47–53Google Scholar
  24. 24.
    Shirase M, Miyazaki Y, Takagi T, Dong-Guk H, Dooho C (2009) Efficient implementation of pairing-based cryptography on a sensor node. IEICE Trans Inf Syst 92(5):909–917CrossRefGoogle Scholar
  25. 25.
    Szczechowiak P, Kargl A, Scott M, Collier M (2009) On the application of pairing based cryptography to wireless sensor networks. In: Proceedings of the Second ACM Conference on Wireless Network Security. ACM, pp 1–12Google Scholar
  26. 26.
    Szczechowiak P, Oliveira LB, Scott M, Collier M, Dahab R (2008) NanoECC: testing the limits of elliptic curve cryptography in sensor networks. In: Wireless Sensor Networks. Springer, New York, pp 305–320Google Scholar
  27. 27.
    Takahashi G, Hoshino F, Kobayashi T (2007) Efficient \(GF(3^m)\) multiplication algorithm for \(\eta _T\) pairing. IACR Cryptol ePrint Arch 2007:463Google Scholar
  28. 28.
    Texas instruments: MSP430 F1611 datasheet. http://www-s.ti.com/sc/ds/msp430f1611.pdf
  29. 29.
    Vercauteren F (2010) Optimal pairings. IEEE Trans Inf Theory 56(1):455–461MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Zhao CA, Zhang F, Huang J (2008) A note on the ate pairing. Int J Inf Secur 7(6):379–382CrossRefGoogle Scholar
  31. 31.
    Zhu S, Setia S, Jajodia S (2003) LEAP: efficient security mechanisms for large-scale distributed sensor networks. In: Proceedings of the 10th ACM Conference on Computer and Communications Security. ACM, pp 62–72Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Center for Information Security Technologies (CIST)Korea UniversitySeoulRepublic of Korea
  2. 2.The Affiliated Institute of ETRIDaejeonRepublic of Korea

Personalised recommendations