The Journal of Supercomputing

, Volume 73, Issue 2, pp 900–922 | Cite as

High-bandwidth flexible interconnections in the all-optical linear array with a reconfigurable pipelined bus system (OLARPBS) optical conduit parallel computing model

Article

Abstract

The all-optical linear array with a reconfigurable pipelined bus system (OLARPBS) optical conduit parallel computing model consists of pipelined optical conduits (buses) that interconnect all-optical processing elements. Previous work on the OLARPBS, following the designs of predecessor models, considered interconnections that mostly, rigidly connected a linear array of processing elements in the same specific order. Such rigidness results in a communication (memory) bound architecture and imposes algorithm scheduling difficulties, both of which potentially limit the capability of the model. A highly scalable and flexible interconnect, designed for high-bandwidth and high-speed interconnections, is developed in this paper. A matrix multiplication algorithm is designed to take advantage of this new interconnection design and includes a comparison with a previous algorithm. The advantages include addressing the communication limitations and enabling more flexible algorithms with increased processing efficiency.

Keywords

Interconnection Optical OLARPBS Parallel computing model Unconventional computing 

References

  1. 1.
    d’Auriol BJ, Molakaseema R (2005) A parameterized linear array with a reconfigurable pipelined bus system: LARPBS(p). Comput J 48(1):115–125CrossRefGoogle Scholar
  2. 2.
    d’Auriol BJ (2008) The systems edge of the parameterized linear array with a reconfigurable pipelined bus system (LARPBS(p)) optical bus parallel computing model. J Supercomput. doi: 10.1007/s11227-008-0223-z
  3. 3.
    d’Auriol BJ (2016) All-optical linear array with a reconfigurable pipelined bus system (OLARPBS) optical bus parallel computing model. J Supercomput 72(2):753–769Google Scholar
  4. 4.
    Chiarulli DM, Melhem RG, Levitan SP (1987) Using coincident optical pulses for parallel memory addressing. IEEE Comput 20(12):48–58CrossRefGoogle Scholar
  5. 5.
    Guo Z, Melhem RG, Hall RW, Chiarulli DM, Levitan SP (1990) Array processors with pipelined optical busses. In: Jaja J (ed) Proceedings of 3rd symposium on frontiers of massively parallel computation (Cat. No.90CH2908-2), College Park, pp 333–342Google Scholar
  6. 6.
    Pavel S, Akl SG (1995) On the power of arrays with reconfigurable optical buses. Technical report no. 95-374. Queens University, KingstonGoogle Scholar
  7. 7.
    Pan Y, Li K (1996) Linear array with a reconfigurable pipelined bus system—concepts and applications. In: Arabnia H (ed) Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’96), vol III, Sunnyvale, pp 1431–1441Google Scholar
  8. 8.
    Melhem RG, Chiarulli D, Levitan S (1989) Space multiplexing of waveguides in optically interconnected multiprocessor systems. Comput J 32(4):362–369CrossRefGoogle Scholar
  9. 9.
    Levitan SP, Chiarulli DM, Melhem RG (1990) Coincident pulse techniques for multiprocessor interconnection structures. Appl Opt 29(4):2024–2033CrossRefGoogle Scholar
  10. 10.
    Chiarulli DM, Ditmore RM, Levitan SP, Melhem RG (1991) An all optical addressing circuit: experimental results and scalability analysis. J Lightwave Technol 9(12):1717–1725CrossRefGoogle Scholar
  11. 11.
    Chiarulli D, Levitan S, Melhem R, Bidnurkar M, Ditmore R, Gravenstreter G, Guo Z, Qiao C, Sakr M, Teza J (1994) Optoelectronic buses for high-performance computing. Proc IEEE 92(11):1701–1709CrossRefGoogle Scholar
  12. 12.
    Zheng S, Li K, Pan Y, Pinotti MC (2001) Generalized coincident pulse technique and new addressing schemes for time-division multiplexing optical buses. J Parallel Distrib Comput 61(8):1033–1051CrossRefMATHGoogle Scholar
  13. 13.
    d’Auriol BJ, Roldán JR (2009) An optical power budget model for the parameterized linear array with a reconfigurable pipelined bus system (LARPBS(p)) model). J Parallel Distrib Comput 69(10):815–823CrossRefGoogle Scholar
  14. 14.
    Sahni S (1999) Models and algorithms for optical and optoelectronic parallel computer. In: Proceedings of 1999 international symposium on parallel architecture, algorithms and networks (I-SPAN’99), pp 2–7Google Scholar
  15. 15.
    Sahni S (2001) Models and algorithms for optical and optoelectronic parallel computers. Int J Found Comput Sci 12(3):249–264CrossRefGoogle Scholar
  16. 16.
    d’Auriol BJ, Beltran M (2006) A historical analysis of fiber based optical bus parallel computing models. Scal Comput Pract Exp (SCPE) 7(1):115–125Google Scholar
  17. 17.
    He M, Wu X, Zheng S-Q, Burkhard Englert B (2010) Optimal sorting algorithms for a simplified 2D array with reconfigurable pipelined bus system. IEEE Trans Parallel Distrib Syst 21(3):303–312CrossRefGoogle Scholar
  18. 18.
    Raju SV, Babu AV (2007) Parallel algorithms for string matching problem on single and two dimensional reconfigurable pipelined bus systems. J Comput Sci 3(9):754–759CrossRefGoogle Scholar
  19. 19.
    Pan Y (1994) Order statistics on optically interconnected multiprocessor systems. Opt Laser Technol 26(4):281–287CrossRefGoogle Scholar
  20. 20.
    Li Y, Pan Y, Zheng S (1997) A pipelined TDM optical bus with conditional delays. In: Goodman J, Hinton S, Pinkston T, Schenfeld E (eds) Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, pp 196–201Google Scholar
  21. 21.
    ElGindy H (1998) An improved sorting algorithm for linear arrays with optical buses (extended abstract) (manuscript), April 1998Google Scholar
  22. 22.
    Pan Y (2003) Computing on the restricted LARPBS model. In: Proceedings of the 2003 international symposium on parallel and distributed processing and applications. Lecture notes in computer science, vol 2745, Aizu-Wakamatsu City, pp 9–13Google Scholar
  23. 23.
    Qiao C, Melhem RG (1993) Time-division optical communications in multiprocessor arrays. IEEE Trans Comput 42(5):577–590CrossRefGoogle Scholar
  24. 24.
    Qiao C (1995) Efficient matrix operations in a reconfigurable array with spanning optical buses. In: Proceedings. Frontiers ’95. The fifth symposium on the frontiers of massively parallel computation (Cat. No.95TH8024). IEEE Computer Society Press 1994, McLean, pp 273–280Google Scholar
  25. 25.
    Trahan JL, Bourgeois AG, Vaidyanathan R (1998) Tighter and broader complexity results for reconfigurable models. Parallel Process Lett 8(3):271–282MathSciNetCrossRefGoogle Scholar
  26. 26.
    Li Y, Tao J, Zheng S (1998) A symmetric processor array with synchronous optical buses and switches. Parallel Process Lett 8(3):283–295CrossRefGoogle Scholar
  27. 27.
    Pinotti MC, Zheng S (1999) Efficient parallel computation on a processor array with pipelined TDM optical buses. In: Haney M, Kostuk R, Lund C, Schenfield E (eds) Proceedings of the 12th ISCA International Conference on Parallel and Distributed Computing Systems, Fort Lauderdale, pp 114–120Google Scholar
  28. 28.
    Wu C-H, Horng S-J (2001) L\(_2\) vector median filters on arrays with reconfigurable optical buses. IEEE Trans Parallel Distrib Syst 12(12):1281–1292CrossRefGoogle Scholar
  29. 29.
    Shen Z, Wu L, Yan J (2013) The reconfigurable module of ternary optical computer. Optik Int J Light Electron Opt 124(13):1415–1419 [Online]. http://www.sciencedirect.com/science/article/pii/S0030402612002963
  30. 30.
    Wu K, de Abajo JG, Soci C, Shum PP, Zheludev NI (2013) Fiber non-turing all-optical computer for solving complex decision problems. In: Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference, p 1Google Scholar
  31. 31.
    Arabnia HR, Oliver MA (1996) Arbitrary rotation of raster images with simd machine architectures. Int J Eurogr Assoc (Comput Gr Forum) 6(1):3–12Google Scholar
  32. 32.
    Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-and-data-decomposition approach. J Parallel Distrib Comput 10(2):188–193CrossRefGoogle Scholar
  33. 33.
    Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor—theoretical properties and algorithms. Parallel Comput 21:1783–1805CrossRefGoogle Scholar
  34. 34.
    Arabnia HR, Bhandarkar S (1996) Parallel stereocorrelation on a reconfigurable multi-ring network. J Supercomput 10(3):243–270CrossRefMATHGoogle Scholar
  35. 35.
    Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and its implementation using a multistage switching box. In: Proceedings of the 7th Annual International High Performance Computing Conference. The 1993 High Performance Computing: New Horizons Supercomputing symposium, Calgary, pp 349–357Google Scholar
  36. 36.
    Wani MA, Arabnia HR (2003) Parallel edgeregionbased segmentation algorithm targeted at reconfigurable multiring network. J Supercomput 25(1):43–63CrossRefMATHGoogle Scholar
  37. 37.
    Uddin MR, Lim YDJJS, Won YH (2009) All-optical digital logic gates using single-mode Fabry–Pérot laser diode. IEEE Photonics Technol Lett 21(19):1468–1470CrossRefGoogle Scholar
  38. 38.
    Abdeldayem H, Frazier DO, Witherow WK, Banks CE, Penn BG, Paley MS (2008) Recent advances in photonic devices for optical super computing. In: Proceedings of the 1st international workshop on optical supercomputing, OSC’08, ser. LNCS 5172. Springer, Berlin, pp 9–32 [Online]. http://dx.doi.org/10.1007/978-3-540-85673-3_2
  39. 39.
    Abdeldayem H, Frazier DO, Witherow WK, Banks CE, Penn BG, Paley MS (2008) Recent advances in photonic devices for optical super computing. In: Presentation file: 7th International Conference on Unconventional Computation, ViennaGoogle Scholar
  40. 40.
    Chattopadhyay T, Maity GK, Roy JN (2008) Designing of all-optical tri-statelogic system with the help of optical nonlinear material. J Nonlinear Opt Phys Mater 17(3):315–328CrossRefGoogle Scholar
  41. 41.
    Larsson A, Westbergh P, Gustavsson JS, Haglund E, Haglund EP (2015) High speed VCSELs and VCSEL arrays for single and multicore fiber interconnects. In: Lei C, Choquette KD (eds) Proceedings of SPIE vol 9381, vertical-cavity surface-emitting lasers XIXGoogle Scholar
  42. 42.
    Moench H, Conrads R, Deppe C, Derra G, Gronenborn S, Gu X, Heusler G, Kolb J, Miller M, Pekarski P, Pollman-Retsch J, Pruijmboom A, Weichmann U (2015) High power VCSEL systems and applications. In: Proceedings of SPIE vol 9348, high-power diode laser technology and applications XIIIGoogle Scholar
  43. 43.
    Pruijmboom A, Apetz R, Conrads R, Deppe C, Derra G, Gronenborn S, Gu X, Kolb JS, Miller M, Moench H, Ogiewa F, Pekarski P, Pollmann-Retsch J, Weichmann U (2015) VCSEL arrays expanding the range of high-power LASER systems and applications. In: Proceedings of ICALEO, AtlantaGoogle Scholar
  44. 44.
    Khoi BV, Tinh PD, Quan NN, nigo Artudo I, Manjarres D, Heirman W, Debaes C, Dambre J, Campenhout JV, Thienpont H (2006) Reconfigurable interconnection networks in distributed shared memory systems: a study on communication patterns. In: Proceedings of the First International Conference on Communications and Electronics, pp 343–347Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.AnyangRepublic of Korea

Personalised recommendations