Advertisement

The Journal of Supercomputing

, Volume 73, Issue 1, pp 414–432 | Cite as

Inter and intra pre-analysis algorithm for HEVC

  • Gabriel Cebrián-MárquezEmail author
  • José Luis Martínez
  • Pedro Cuenca
Article

Abstract

The unceasing demands for high quality multimedia contents and the advent of new resolutions such as ultra high-definition motivated the development of the high efficiency video coding (HEVC) standard, which outperforms prior standards by up to 50 % in terms of coding efficiency. While this improvement meets the aforementioned demands, it also involves a considerable increase in computational cost of the encoder. For this reason, fast and efficient coding algorithms are now a requirement for HEVC-compliant real-time encoders. In this regard, this paper proposes a pre-analysis algorithm designed to provide coding information to both the intra and the inter modules of the encoding stage. As a result, experiments show that the algorithm is able to reduce the encoding time between 12.77 and 18.32 % for random access configurations, at the expense of negligible losses in terms of coding efficiency.

Keywords

HEVC Pre-analysis Intra prediction Inter prediction Reference frame selection Motion estimation 

Notes

Acknowledgments

This work was jointly supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Commission (FEDER funds) under the project TIN2015-66972-C5-2-R, and by the Spanish Ministry of Education, Culture and Sports under the Grant FPU13/04601.

References

  1. 1.
    ISO/IEC, ITU-T (2016) Advanced video coding for generic audiovisual services. ITU-T recommendation H.264 and ISO/IEC 14496-10 (version 10)Google Scholar
  2. 2.
    ISO/IEC, ITU-T (2015) High efficiency video coding (HEVC). ITU-T recommendation H.265 and ISO/IEC 23008-2 (version 3)Google Scholar
  3. 3.
    Sullivan GJ, Ohm JR, Han Woo-Jin, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22(12):1649–1668. doi: 10.1109/TCSVT.2012.2221191 CrossRefGoogle Scholar
  4. 4.
    Ohm JR, Sullivan GJ, Schwarz H, Tan TK, Wiegand T (2012) Comparison of the coding efficiency of video coding standards—including high efficiency video coding (HEVC). IEEE Trans Circuits Syst Video Technol 22(12):1669–1684. doi: 10.1109/TCSVT.2012.2221192 CrossRefGoogle Scholar
  5. 5.
    Cebrián-Márquez G, Martínez JL, Cuenca P (2016) Two-stage intra prediction algorithm for HEVC. In: 16th International Conference on Mathematical Methods in Science and Engineering (CMMSE)Google Scholar
  6. 6.
    Cebrián-Márquez G, Chi Ching Chi, Martínez JL, Cuenca P, Álvarez-Mesa M, Sanz-Rodríguez S, Juurlink B (2015) Reducing HEVC encoding complexity using two-stage motion estimation. In: IEEE International Conference on Visual Communications and Image Processing (VCIP)Google Scholar
  7. 7.
    Cebrián-Márquez G, Martínez JL, Cuenca P (2016) A pre-analysis algorithm for fast motion estimation in HEVC. In: IEEE International Conference on Image Processing (ICIP)Google Scholar
  8. 8.
    Misra K, Segall A, Horowitz M, Shilin Xu, Fuldseth A, Zhou Minhua (2013) An overview of tiles in HEVC. IEEE J Sel Topics Signal Process 7(6):969–977. doi: 10.1109/JSTSP.2013.2271451 CrossRefGoogle Scholar
  9. 9.
    Henry F, Pateux S (2011) Wavefront parallel processing. Tech. Rep. JCTVC-E196Google Scholar
  10. 10.
    Chi CC, Álvarez-Mesa M, Juurlink B, Clare G, Henry F, Pateux S, Schierl T (2012) Parallel Scalability and efficiency of HEVC parallelization approaches. IEEE Trans Circuits Syst Video Technol 22(12):1827–1838. doi: 10.1109/TCSVT.2012.2223056 CrossRefGoogle Scholar
  11. 11.
    Piñol P, Migallón H, López-Granado O, Malumbres MP (2015) Slice-based parallel approach for HEVC encoder. J Supercomput 71(5):1882–1892. doi: 10.1007/s11227-014-1371-y CrossRefGoogle Scholar
  12. 12.
    Piñol P, Migallón H, López-Granado O, Malumbres MP (2014) Parallel strategies analysis over the HEVC encoder. J Supercomput 70(2):671–683. doi: 10.1007/s11227-014-1121-1 CrossRefGoogle Scholar
  13. 13.
    Yan C, Zhang Y, Jizheng X, Dai F, Zhang J, Dai Q, Feng W (2014) Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE Trans Circuits Syst Video Technol 24(12):2077–2089. doi: 10.1109/TCSVT.2014.2335852 CrossRefGoogle Scholar
  14. 14.
    Cebrián-Márquez G, Hernández-Losada JL, Martínez JL, Cuenca P, Tang Minhao, Wen Jiangtao (2015) Accelerating HEVC using heterogeneous platforms. J Supercomput 71(2):613–628. doi: 10.1007/s11227-014-1313-8 CrossRefGoogle Scholar
  15. 15.
    Radicke S, Hahn JU, Wang Qi, Grecos C (2014) Bi-predictive motion estimation for HEVC on a graphics processing unit (GPU). IEEE Trans Consum Electron 60(4):728–736. doi: 10.1109/TCE.2014.7027349 CrossRefGoogle Scholar
  16. 16.
    Cho S, Kim M (2013) Fast CU splitting and pruning for suboptimal CU partitioning in HEVC intra coding. IEEE Trans Circuits Syst Video Technol 23(9):1555–1564. doi: 10.1109/TCSVT.2013.2249017 CrossRefGoogle Scholar
  17. 17.
    Shen L, Zhang Z, An P (2013) Fast CU size decision and mode decision algorithm for HEVC intra coding. IEEE Trans Consum Electron 59(1):207–213. doi: 10.1109/TCE.2013.6490261 CrossRefGoogle Scholar
  18. 18.
    Zhang H, Ma Z (2014) Fast intra mode decision for high efficiency video coding (HEVC). IEEE Trans Circuits Syst Video Technol 24(4):660–668. doi: 10.1109/TCSVT.2013.2290578 CrossRefGoogle Scholar
  19. 19.
    Wie Jiang, Hanjie Ma, Yaowu Chen (2012) Gradient based fast mode decision algorithm for intra prediction in HEVC. In: 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), pp 1836–1840. doi: 10.1109/CECNet.2012.6201851
  20. 20.
    Shen L, Zhang Z, Liu Z (2014) Adaptive inter-mode decision for HEVC jointly utilizing inter-level and spatiotemporal correlations. IEEE Trans Circuits Syst Video Technol 24(10):1709–1722. doi: 10.1109/TCSVT.2014.2313892 CrossRefGoogle Scholar
  21. 21.
    Rhee CE, Lee K, Kim TS, Lee H-J (2012) A survey of fast mode decision algorithms for inter-prediction and their applications to high efficiency video coding. IEEE Trans Consum Electron 58(4):1375–1383CrossRefGoogle Scholar
  22. 22.
    Garrett-Glaser J (2009) A novel macroblock-tree algorithm for high-performance optimization of dependent video coding in H.264/AVC. Tech. Rep., Department of Computer Science. Harvey Mudd CollegeGoogle Scholar
  23. 23.
    VideoLAN (2016) x264 source code repository. http://git.videolan.org/git/x264.git
  24. 24.
    VideoLAN (2016) x265 source code repository. http://hg.videolan.org/x265
  25. 25.
    Lin S, Au OC, Cong Z, Huang FH (2014) Rate distortion modeling and adaptive rate control scheme for high efficiency video coding (HEVC). In: IEEE International Symposium on Circuits and Systems (ISCAS), pp 1933–1936. doi: 10.1109/ISCAS.2014.6865539
  26. 26.
    Mallikarachchi T, Fernando A, Arachchi HK (2014) Efficient coding unit size selection based on texture analysis for HEVC intra prediction. In: IEEE International Conference on Multimedia and Expo (ICME), pp 1–6. doi: 10.1109/ICME.2014.6890319
  27. 27.
    ISO/IEC, ITU-T (2016) HEVC test model (HM) reference software. https://hevc.hhi.fraunhofer.de/
  28. 28.
    Kibeya H, Belghith F, Loukil H, Ben Ayed MA, Masmoudi N (2014) TZSearch pattern search improvement for HEVC motion estimation modules. In: 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), pp 95–99. doi: 10.1109/ATSIP.2014.6834584
  29. 29.
    Bossen F (2013) Common test conditions and software reference configurations. Tech. Rep. JCTVC-L1100Google Scholar
  30. 30.
    Bjøntegaard G (2001) Calculation of average PSNR differences between RD-curves. Tech. Rep. VCEG-M33, ITU-T Video Coding Experts Group (VCEG)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Albacete Research Institute of Informatics (I3A)University of Castilla-La ManchaAlbaceteSpain

Personalised recommendations