Moving object detection using modified temporal differencing and local fuzzy thresholding

Abstract

Most of the existing video object detection schemes are either computationally extensive or fail to detect moving objects in different challenging situations. In this paper, we propose a robust and computationally inexpensive scheme to detect moving objects in video. The threefold approach begins with computation of difference images using temporal information. Difference images are calculated by subtracting two input frames, at each pixel position. Instead of generating difference images using the traditional continuous frame difference approach, we propose using a fixed number of alternate frames centered around the current frame. This approach aids in reducing the computational complexity without compromising on quality of the difference images. After computation of difference images, a novel post-processing scheme is employed by utilizing gamma correction factor and Mahalanobis distance metric to reduce false positives and false negatives. Object segmentation is finally performed on the refined difference image by a local fuzzy thresholding scheme. This avoids problems that are usually encountered in hard thresholding, especially pixel misclassification, which is the most important one. For robust experimental analysis, videos from changedetction.net, CAVIAR, and http://perception.i2r datasets have been used. These selected videos contain a wide variety of common challenges faced during object detection. Some examples are the presence of dynamic backgrounds, shadows, bad weather, etc. The results establish the effectiveness of the proposed scheme over some of the existing schemes both qualitatively and quantitatively as delineated in the experimental result section.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    McFarlane N, Schofield C (1995) Segmentation and tracking of piglets in images. Br Mach Vision Assoc 8(3):187–193

    Article  Google Scholar 

  2. 2.

    Zheng J, Wang Y (2006) Extracting roadway background image: a mode based approach. J Transp Res Board 1944:82–88

    Article  Google Scholar 

  3. 3.

    Toyama K, Krumm J (1999) Wallflower: principles and practice of background maintenance. In: Proc. 7th. IEEE Int. Conf. on Computer Vision, pp 255–261

  4. 4.

    Messelodi S, Modena C (2005) A Kalman filter based background updating algorithm robust to sharp illumination changes. Lect Notes Comput Sci 3617:163–170

    Article  Google Scholar 

  5. 5.

    Wren C, Azarbayejani A (1997) Pfinder: Real-time tracking of the human body. IEEE Trans Pattern Anal Mach Intell 19(7):780–785

    Article  Google Scholar 

  6. 6.

    Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol 2, pp 2246–2252

  7. 7.

    Elgammal A, Duraiswami R, Harwood D, Davis LS (2002) Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc IEEE 90(7):1151–1163

    Article  Google Scholar 

  8. 8.

    Cavallaro A, Ebrahimi T (2000) Video object extraction based on adaptive background and statistical change detection. Proc Soc Photo Opt Instrum Eng 4310:465–475

    Google Scholar 

  9. 9.

    Jodoin PM, Mignotte M, Konrad J (2007) Statistical background subtraction using spatial cues. IEEE Trans Circuits Syst Video Technol 17(12):1758–1763

    Article  Google Scholar 

  10. 10.

    Zhang H, Xu D (2006) Fusing color and texture features for background model. Lect Notes Comput Sci 4223:887–893

    Article  Google Scholar 

  11. 11.

    Baf FE, Bouwmans T, Vachon B (2008) Fuzzy integral for moving object detection. In: IEEE Int. Conf. on Fuzzy Systems, pp 1729–1736

  12. 12.

    Kameda Y, Minoh M (1996) A human motion estimation method using 3-successive video frames. In: Int. Conf. on Virtual Systems and Multimedia (VSMM). Gifu, Japan, pp 135–140

  13. 13.

    Collins R, Lipton A, Kanade T, Fijiyoshi H, Duggins D, Tsin Y, Tolliver D, Enomoto N, Hasegawa O, Burt P, Wixson L (2000) A system for video surveillance and monitoring, Tech. rep. Carnegie Mellon University, Pittsburg

    Google Scholar 

  14. 14.

    Zhang Y, Wang X, Qu B (2012) Three-frame difference algorithm research based on mathematical morphology. Proc Eng 29:2705–2709

    Article  Google Scholar 

  15. 15.

    Lipton AJ, Fujiyoshi H, Patil RS (1998) Moving target classification and tracking from real-time video. In: Proc., Fourth IEEE Workshop on Applications of Computer Vision (WACV), pp 8–14

  16. 16.

    Desa SM, Salih QA (2004) Image subtraction for real time moving object extraction. In: Proc. IEEE Int. Conf. on Computer Graphics, Imaging and Visualization, pp 41–45

  17. 17.

    Wang Z, Liao K, Xiang J, Zhang Q (2014) Moving object detection based on temporal information. IEEE Signal Process Lett 21(11):1403–1407

    Article  Google Scholar 

  18. 18.

    Otsu N (1979) A threshold selection method from gray-scale histogram. IEEE Trans Syst Man Cybern 9(1):62–66

    MathSciNet  Article  Google Scholar 

  19. 19.

    Kurita T, Otsu N, Abdelmalek N (1992) Maximum likelihood thresholding based on population mixture models. Pattern Recogn 25(10):1231–1240

    Article  Google Scholar 

  20. 20.

    Velasco FRD (1980) Thresholding using the iso data clustering algorithm. IEEE Trans Syst Man Cybern 10:771–774

    Article  Google Scholar 

  21. 21.

    Lee H, Park RH (1980) Comments on an optimal threshold scheme for image segmentation. IEEE Trans Syst Man Cybern 20:741–742

    Article  Google Scholar 

  22. 22.

    Pun T (1980) A new method for gray-level picture threshold using the entropy of the histogram. Signal Process 23:223–237

    Article  Google Scholar 

  23. 23.

    Hertz L, Schafer RW (1998) Multilevel thresholding using edge matching. Comput Vis Graph Image Process 44:279–295

    Article  Google Scholar 

  24. 24.

    Leung C, Lam F (1997) Maximum a posteriori spatial probability segmentation. Vis Image Signal Process IEEE Proc 144(3):161–167

    Article  Google Scholar 

  25. 25.

    Wu H, Barba J, Gil J (2000) Iterative thresholding for segmentation of cells from noisy images. J Microsc 197(3):296–304

    Article  Google Scholar 

  26. 26.

    Fernández A, Curiale SAH, Ferrero GVS (2015) A local fuzzy thresholding methodology for multiregion image segmentation. Knowl Based Syst 83:1–12

    Article  Google Scholar 

  27. 27.

    Zeng X, Singh M (1994) Approximation theory of fuzzy systems—SISO case. IEEE Trans Fuzzy Syst 2(2):162–176

    Article  Google Scholar 

  28. 28.

    Zhang S, Yao H, Liu S, Chen X, Gao W (2008) A covariance-based method for dynamic background subtraction. In: Proc. 19th Int. Conf. on Pattern Recognition, pp 1–4

  29. 29.

    Kim K, Chalidabhongse TH, Harwood D, Davis LS (2005) Realtime foreground-background segmentation using codebook Model. Real Time Image 11:172–185

    Article  Google Scholar 

  30. 30.

    Matsuyame T, Ohya T, Habe H (2000) Background subtraction for non-stationary scene. In: Proc. Asian Conf. on Computer Vision, pp 622–667

  31. 31.

    Chiranjeevi P, Sengupta S (2011) Moving object detection in the presence of dynamic backgrounds using intensity and textural features. J Electron Imaging 20(4):043009

    Article  Google Scholar 

  32. 32.

    IEEE Workshop on Change Detection in Conjunction with CVPR2014. http://www.changedetection.net. Accessed 17 Jan 2016

  33. 33.

    EC Funded CAVIAR Project, IST 2001 37540. http://homepages.inf.ed.ac.uk/rbf/CAVIAR/. Accessed 14 Oct 2015

  34. 34.

    ftp://ftp.pets.rdg.ac.uk/pub/PETS2000. Accessed 23 Dec 2015

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ashish Singh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paul, N., Singh, A., Midya, A. et al. Moving object detection using modified temporal differencing and local fuzzy thresholding. J Supercomput 73, 1120–1139 (2017). https://doi.org/10.1007/s11227-016-1815-7

Download citation

Keywords

  • Moving object detection
  • Temporal information
  • Fuzzy thresholding
  • Dynamic background
  • Difference image
  • Ghosting