QoS-aware service composition in cloud computing using data mining techniques and genetic algorithm

Abstract

One of the requirements of QoS-aware service composition in cloud computing environment is that it should be executed on-the-fly. It requires a trade-off between optimality and the execution speed of service composition. In line with this purpose, many researchers used combinatorial methods in previous works to achieve optimality within the shortest possible time. However, due to the ever-increasing number of services which leads to the enlargement of the search space of the problem, previous methods do not have adequate efficiency in composing the required services within reasonable time. In this paper, genetic algorithm was used to achieve global optimization with regard to service level agreement. Moreover, service clustering was used for reducing the search space of the problem, and association rules were used for a composite service based on their histories to enhance service composition efficiency. The conducted experiments acknowledged the higher efficiency of the proposed method in comparison with similar related works.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener Comput Syst 25(6):599–616

    Article  Google Scholar 

  2. 2.

    Liu F, Tong J, Mao J, Bohn R, Messina J, Badger L, Leaf D (2011) NIST cloud computing reference architecture. NIST Spec Publ 500:292

    Google Scholar 

  3. 3.

    Garg SK, Versteeg S, Buyya R (2013) A framework for ranking of cloud computing services. Future Gener Comput Syst 29(4):1012–1023

    Article  Google Scholar 

  4. 4.

    Pressman RS (2005) Software engineering: a practitioner’s approach. Palgrave Macmillan

  5. 5.

    Chiu D, Deshpande S, Agrawal G, Li R (2009) A dynamic approach toward QoSAware service workflow composition. In: IEEE International Conference on Web Services, pp 655–662

  6. 6.

    Joshi KP, Yesha Y, Finin T (2014) Automating cloud services life cycle through semantic technologies. IEEE Trans Serv Comput 7(1):109–122. doi:10.1109/TSC.2012.41

  7. 7.

    Rosenberg F, Celikovic P, Michlmayr A, Leitner P, Dustdar S (2009) An end-to-end approach for QoS-aware service composition. In: Enterprise Distributed Object Computing Conference, 2009. EDOC’09. IEEE International. IEEE, pp 151–160

  8. 8.

    Teixeira M, Ribeiro R, Oliveira C, Massa R (2015) A quality-driven approach for resources planning in service-oriented architectures. Expert Syst Appl 42(12):5366–5379

    Article  Google Scholar 

  9. 9.

    Karim R, Ding Chen, Miri A (2013) An end-to-end QoS Mapping approach for cloud service selection. In: 9th World Congress on Services, pp 341–348

  10. 10.

    Baset Salman A (2012) Cloud SLAs: present and future. ACM SIGOPS Oper Syst Rev 46(2):57–66

    Article  Google Scholar 

  11. 11.

    Kofler K, Haq Iu, Schikuta E (2010) User-Centric, heuristic optimization of service composition in clouds. In: International Conference on Euro Parallel Processing. Springer, Berlin, Heidelberg, pp 405–417

  12. 12.

    Kofler K, Schikuta E (2009) A parallel branch and bound algorithm for workflow QoS optimization. In: IEEE International Conference on Parallel Processing, pp 478–485

  13. 13.

    Huang J, Liu Y, Duan Q (2012) Service provisioning in virtualization-based cloud computing: modeling and optimization. In: GLOBECOM, pp 1710–1715

  14. 14.

    Yong Z, Wei L, Junzhou L, Xiao Z (2012) A novel two-phase approach for QoS-aware service composition based on history records. In: 5th IEEE International Conference on Service-Oriented Computingand Applications, pp 1–8

  15. 15.

    Jula A, Sundararajan E, Othman Z (2014) Cloud computing service composition: a systematic literature review. Expert Syst Appl 41(8):3809–3824

    Article  Google Scholar 

  16. 16.

    Ye Z, Zhou X, Bouguettaya A (2011) Genetic algorithm based QoS-aware service compositions in cloud computing. In: International Conference Database Systems for Advanced Applications. Springer, Berlin, Heidelberg, pp 321–334

  17. 17.

    Moscato F, Mazzocca N, Vittorini V, Lorenzo GD, Mosca P, Magaldi M (2005) Workflow pattern analysis in web services orchestration: the BPEL4WS example. In: International Conference on HighPerformance Computing and Communications, pp 395–400

  18. 18.

    da Silva AS, Ma H, Zhang M (2016) Genetic programming for QoS-aware web service composition and selection. Soft Comput 1–17. doi:10.1007/s00500-016-2096-z

  19. 19.

    Yu Y, Ma H, Zhang M (2013) An adaptive genetic programming approach to qos-aware web services composition. In: Evolutionary computation (CEC), 2013 IEEE Congress. IEEE, pp 1740–1747

  20. 20.

    AlSedrani A, Touir A (2016) Web service composition in dynamic environment: a comparative study. Comput Sci Inf Technol 75–84. doi:10.5121/csit.2016.60508

  21. 21.

    Yu Y, Ma H, Zhang M (2014) A genetic programming approach to distributed qos-aware web service composition. In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp 1840–1846

  22. 22.

    AllamehAmiri Mohammad, Derhami Vali, Ghasemzadeh Mohammad (2013) QoS-Based web service composition based on genetic algorithm. J AI Data Min 1(2):63–73

    Google Scholar 

  23. 23.

    Liu B, Meng P (2008) Hybrid algorithm combining ant colony algorithm with genetic algorithm for continuous domain. In: Young computer scientists, 2008. ICYCS 2008. The 9th International Conference. IEEE, pp 1819–1824

  24. 24.

    Zhao Z, Hong X, Wang S (2015) A web service composition method based on merging genetic algorithm and ant colony algorithm. In: Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference. IEEE, pp 1007–1011

  25. 25.

    ZHAO C, WANG J, Qin Jie, Zhang W-Q (2014) A hybrid algorithm combining ant colony algorithm and genetic algo-rithm for dynamic web service composition. Open Cybern Syst J 8:146–154

    Article  Google Scholar 

  26. 26.

    Elbeltagi E, Hegazy T, Grierson D (2005) Comparison among five evolutionary-based optimization algorithms. Adv Eng Inf 19(1):43–53

    Article  Google Scholar 

  27. 27.

    Zhao C-Y, Wang J-L, Qin J, Zhang W-Q (2014) A hybrid algorithm combining ant colony algorithm and genetic algorithm for dynamic web service composition. Open Cybern Syst J 8:146–154

    Article  Google Scholar 

  28. 28.

    Gao F, Curry E, Ali MI, Bhiri S, Mileo A (2014) Qos-aware complex event service composition and optimization using genetic algorithms. In: International Conference on Service-Oriented Computing. Springer, Berlin, Heidelberg, pp 386–393

  29. 29.

    Wang S, Sun Q, Zou H, Yang F (2013) Particle swarm optimization with skyline operator for fast cloud-based web service composition. Mob Netw Appl 18(1):116–121

    Article  Google Scholar 

  30. 30.

    Rostami NH, Kheirkhah E, Jalali M (2014) An optimized semantic web service composition method based on clustering and ant colony algorithm. arXiv:1402.2271

  31. 31.

    Seghir F, Khababa A (2016) A hybrid approach using genetic and fruit fly optimization algorithms for QoS-aware cloud service composition. J Intell Manuf 1–20. doi:10.1007/s10845-016-1215-0

  32. 32.

    Mabrouk NB, Beauche S, Kuznetsova E, Georgantas N, Issarny V (2009) QoS-aware service composition in dynamic service oriented environments. In: International Conference on Middleware. Springer, Berlin, Heidelberg, pp 123–142

  33. 33.

    Xia Y, Chen P, Bao L, Wang M, Yang J (2011) A QoS-aware web service selection algorithm based on clustering. In: IEEE International Conference on Web Services (ICWS), pp 428–435

  34. 34.

    Deng SY, Du YY (2013) Web service composition approach based on service cluster and Qos. J Comput Appl 33(8):2167–2166

    Google Scholar 

  35. 35.

    Ardagna D, Pernici B (2006) Global and local QOS quarantee in web service selection. In: Business Process Management Workshops, pp 32–46

  36. 36.

    Sun SX, Zhao J (2012) A decomposition-based approach for service composition with global QoS quarantees. J Inf Sci 199(1):138–153

    Article  Google Scholar 

  37. 37.

    Alrifai M, Risse T, Nejdl W (2012) A hybrid approach for efficient web service composition with end-to-end QoS constraints. ACM Trans Web 6(2):7

    Article  Google Scholar 

  38. 38.

    Liu Z-Z, Chu D-H, Jia Z-P, Shen J-Q, Wang L (2016) Two-stage approach for reliable dynamic web service composition. Knowl Based Syst 97:123–143. doi:10.1016/j.knosys.2016.01.010

  39. 39.

    Tao F, LaiLi Y, Xu L, Zhang L (2013) FC-PACO-RM: a parallel method for service composition optimal-selection in cloud manufacturing system. IEEE Trans Ind Inf 9(4):2023–2033

    Article  Google Scholar 

  40. 40.

    Wang D, Yang Y, Mi Z (2014) A genetic-based approach to web service composition in geo- distributed cloud environment. Comput Electr Eng 43:129–141. doi:10.1016/j.compeleceng.2014.10.008

  41. 41.

    Jula A, Othman Z, Sundararajan E (2013) A hybrid imperialist competitive-gravitational attraction search algorithm to optimize cloud service composition. In: IEEE Workshop on Memetic Computing, pp 37–43

  42. 42.

    Fan X-Q (2013) A decision-making method for personalized composite service. Expert Syst Appl 40(15):5804–5810

    Article  Google Scholar 

  43. 43.

    Xu Y, Yin J, Deng S, Xiong NN, Huang J (2016) Context-aware QoS prediction for web service recommendation and selection. Expert Syst Appl 53:75–56. doi:10.1016/j.eswa.2016.01.010

  44. 44.

    Kurdi H, Al-Anazi A, Campbell C, Al Faries A (2015) A combinatorial optimization algorithm for multiple cloud service composition. Comput Electr Eng 42:107–113

    Article  Google Scholar 

  45. 45.

    Yu Q, Chen L, Li B (2015) Ant colony optimization applied to web service compositions in cloud computing. Comput Electr Eng 41:18–27

    Article  Google Scholar 

  46. 46.

    Xia Y, Chen P, Bao L, Wang M, Yang J (2011) A QoS-aware web service selection algorithm based on clustering. In: Web services (ICWS), 2011 IEEE International Conference. IEEE, pp 428–435

  47. 47.

    Newcomer E, Lomow G (2005) Understanding SOA with web services. Addison-Wesley, Boston, Mass

    Google Scholar 

  48. 48.

    Ghazanfari M, Alizadeh S, Teymurpour B (2013) Data mining and knowledge discovery. Science and Technology Publication Co, 1st edn. ISBN: 9789644541780

  49. 49.

    Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases, VLDB, vol 1215, pp 487–499

  50. 50.

    Han Jiawei, Kamber Micheline, Pei Jian (2011) Data mining: concepts and techniques. Elsevier, Amsterdam

    Google Scholar 

  51. 51.

    Bianco P, Lewis GA, Merson P (2008) Service Level agreements in service-oriented architecture environments. Technical note CMU/SEI-2008-TN-021. http://www.sei.cmu.edu

  52. 52.

    van Steen M, Tanenbaum AS (2007) Distributed systems: principles and paradigms

  53. 53.

    Nai-zhong WU (2013) Dynamic composition of web service based on cloud computing. Int J Hybrid Inf Technol 6(6):389–398

    Article  Google Scholar 

  54. 54.

    Mitchell Melanie (1998) An introduction to genetic algorithms. MIT Press, Cambridge

    Google Scholar 

  55. 55.

    Wright AH (1991) Genetic algorithms for real parameter optimization. Found Genet Algorithms 1:205–218

    Article  MathSciNet  Google Scholar 

  56. 56.

    Lim SP, Haron H (2013) Performance comparison of genetic algorithm, differential evolution and particle swarm optimization towards benchmark functions. In: Open Systems (ICOS), 2013 IEEE Conference. IEEE, pp 41–46

  57. 57.

    Hassan R, Cohanim B, De Weck O, Venter G (2005) A comparison of particle swarm optimization and the genetic algorithm. In: Proceedings of the 1st AIAA Multidisciplinary Design Optimization Specialist Conference, pp 18–21

  58. 58.

    http://www.uoguelph.ca/~qmahmoud/qws/

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ayaz Isazadeh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karimi, M.B., Isazadeh, A. & Rahmani, A.M. QoS-aware service composition in cloud computing using data mining techniques and genetic algorithm. J Supercomput 73, 1387–1415 (2017). https://doi.org/10.1007/s11227-016-1814-8

Download citation

Keywords

  • Cloud computing
  • Service composition
  • Clustering
  • Association rules
  • Genetic algorithm