Advertisement

The Journal of Supercomputing

, Volume 72, Issue 5, pp 1973–2013 | Cite as

A novel MPI reduction algorithm resilient to imbalances in process arrival times

  • P. Marendic
  • J. Lemeire
  • D. Vucinic
  • P. Schelkens
Article

Abstract

Reduction algorithms are optimized only under the assumption that all processes commence the reduction simultaneously. Research on process arrival times has shown that this is rarely the case. Thus, all benchmarking methodologies that take into account only balanced arrival times might not portray a true picture of real-world algorithm performance. In this paper, we select a subset of four reduction algorithms frequently used by library implementations and evaluate their performance for both balanced and imbalanced process arrival times. The main contribution of this paper is a novel imbalance robust algorithm that uses pre-knowledge of process arrival times to construct reduction schedules. The performance of selected algorithms was empirically evaluated on a 128 node subset of the Partnership for Advanced Computing in Europe CURIE supercomputer. The reported results show that the new imbalance robust algorithm universally outperforms all the selected algorithms, whenever the reduction schedule is precomputed. We find that when the cost of schedule construction is included in the total runtime, the new algorithm outperforms the selected algorithms for problem sizes greater than 1 MiB.

Keywords

Reduction MPI Load imbalance Collective operations System noise Process arrival time 

Notes

Acknowledgments

This work is funded by Intel, the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT) and by the iMinds institute. Some of the data necessary for the experiments in this paper was produced at the ExaScience Life Lab, Leuven, Belgium. We acknowledge PRACE for awarding us access to resource CURIE based in France at CEA/TGCC-GENCI. Peter Schelkens has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 617779 (INTERFERE).

References

  1. 1.
    Meneses E, Kal LV (2015) Camel: collective-aware message logging. J Supercomput 71(7):2516–2538. doi: 10.1007/s11227-015-1402-3 CrossRefGoogle Scholar
  2. 2.
    Ferreira KB, Bridges P, Brightwell R (2008) Characterizing application sensitivity to OS interference using kernel-level noise injection. In: Proceedings of the 2008 ACM/IEEE conference on supercomputing (SC’08). IEEE Press, Piscataway, pp 19:1–19:12Google Scholar
  3. 3.
    Faraj A, Patarasuk P, Yuan X (2008) A study of process arrival patterns for MPI collective operations. Int J Parallel Program 36(6):571–591Google Scholar
  4. 4.
    Huang C, Lawlor O, Kale LV (2004) Adaptive MPI. In: Languages and compilers for parallel computing. Springer, New York, pp 306–322Google Scholar
  5. 5.
    Mamidala A, Liu J, Panda DK (2004) Efficient barrier and allreduce on infiniband clusters using multicast and adaptive algorithms. In: Proceedings of the 2004 IEEE international conference on cluster computing (CLUSTER’04). IEEE Computer Society, Washington, DC, pp 135–144Google Scholar
  6. 6.
    Patarasuk P, Yuan X (2008) Efficient MPI bcast across different process arrival patterns. Parallel Distrib Process Symp Int 0:1–11. http://doi.ieeecomputersociety.org/10.1109/IPDPS.2008.4536308
  7. 7.
    Qian Y (2010) Design and evaluation of efficient collective communications on modern interconnects and multi-core clusters. Ph.D. thesis, Queen’s University, KingstonGoogle Scholar
  8. 8.
    Message Passing Interface Forum, \({\sf MPI}\) (2016) A Message-Passing Interface Standard. Version 3.1. http://www.mpi-forum.org/docs/mpi-3.1/. Accessed 4 June 2015
  9. 9.
    Karp RM, Sahay A, Santos EE, Schauser KE (1993) Optimal broadcast and summation in the LogP model. In: Proceedings of the fifth annual ACM symposium on parallel algorithms and architectures. ACM, New York, pp 142–153Google Scholar
  10. 10.
    Louis-Claude Canon GA (2012) Scheduling associative reductions with homogenous costs when overlapping communications and computations. Tech. Rep. 7898, InriaGoogle Scholar
  11. 11.
    Rabenseifner R (2004) Optimization of collective reduction operations. In: Procs. of int. conf. on computational science (ICCS), pp 1–9Google Scholar
  12. 12.
    Rabenseifner R, Trff JL (2004) More efficient reduction algorithms for non-power-of-two number of processors in message-passing parallel systems. In: EuroPVM/MPI, pp 36–46Google Scholar
  13. 13.
    Patarasuk P, Yuan X (2009) Bandwidth optimal all-reduce algorithms for clusters of workstations. J Parallel Distrib Comput 69(2):117–124CrossRefGoogle Scholar
  14. 14.
    Jain N, Sabharwal Y (2010) Optimal bucket algorithms for large MPI collectives on torus interconnects. In: Proceedings of the 24th ACM international conference on supercomputing. ACM, New York, pp 27–36Google Scholar
  15. 15.
    Chan E, Heimlich M, Purkayastha A, van de Geijn R (2007) Collective communication: theory, practice, and experience. Concurr Comput Pract Exp 19(13):1749–1783CrossRefGoogle Scholar
  16. 16.
    Peterka T, Goodell D, Ross R, Shen H-W, Thakur R (2009) A configurable algorithm for parallel image-compositing applications. In: Proceedings of the conference on high performance computing networking, storage and analysis (SC’09). ACM, New York, pp 4:1–4:10. doi: 10.1145/1654059.1654064
  17. 17.
    Kendall W, Peterka T, Huang J, Shen H-W, Ross R (2010) Accelerating and benchmarking Radix-\(k\) image compositing at large scale. In: Proceedings of the 10th eurographics conference on parallel graphics and visualization (EG PGV’10). Eurographics Association, Aire-la-Ville, pp 101–110. doi: 10.2312/EGPGV/EGPGV10/101-110
  18. 18.
    Pjesivac-Grbovic J, Angskun T, Bosilca G, Fagg GE, Dongarra GJJ (2005) Performance analysis of MPI collective operations. In: IEEE international parallel and distributed processing symposiumGoogle Scholar
  19. 19.
    Sanders P, Speck J, Trff JL (2009) Two-tree algorithms for full bandwidth broadcast, reduction and scan. Parallel Comput 35(12):581–594. (Selected papers from the 14th European PVM/MPI users group meeting)Google Scholar
  20. 20.
    Thakur R, Rabenseifner R, Gropp W (2005) Optimization of collective communication operations in MPICH. Int J High Perform Comput Appl 19(1):49–66CrossRefGoogle Scholar
  21. 21.
    Hoefler T, Moor D (2014) Energy, memory, and runtime tradeoffs for implementing collective communication operations. J Supercomput Front Innov 1(2):58–75Google Scholar
  22. 22.
    Fabrizio Petrini SP, Kerbyson Darren J (2003) The case of the missing supercomputer performance: achieving optimal performance on the 8,192 processors of ASCI Q. In: Proceedings of the 2003 ACM/IEEE conference on supercomputing (SC’03), p 55Google Scholar
  23. 23.
    Agarwal S, Garg R, Vishnoi NK (2005) The impact of noise on the scaling of collectives: a theoretical approach. In: Proceedings of the 12th international conference on high performance computing (HiPC’05). Springer, Berlin, pp 280–289. doi: 10.1007/11602569_31
  24. 24.
    Hoefler T, Schneider T, Lumsdaine A (2010) Characterizing the influence of system noise on large-scale applications by simulation. In: Proceedings of the 2010 ACM/IEEE international conference for high performance computing, networking, storage and analysis (SC’10). IEEE Computer Society, Washington, DC, pp 1–11. doi: 10.1109/SC.2010.12
  25. 25.
    Ghysels P, Ashby TJ, Meerbergen K, Vanroose W (2013) Hiding global communication latency in the gmres algorithm on massively parallel machines. SIAM J Sci Comput 35(1):C48–C71Google Scholar
  26. 26.
    Ferreira KB, Bridges PG, Brightwell R, Pedretti KT (2013) The impact of system design parameters on application noise sensitivity. Clust Comput 16(1):117–129CrossRefGoogle Scholar
  27. 27.
    Eichenberger AE, Abraham SG (1995) Impact of load imbalance on the design of software barriers. In: Proceedings of the 1995 international conference on parallel processing, pp 63–72Google Scholar
  28. 28.
    Marendic P, Lemeire J, Haber T, Vucinic D, Schelkens P (2012) An investigation into the performance of reduction algorithms under load imbalance. In: Kaklamanis C, Papatheodorou T, Spirakis P (eds) Euro-Par 2012 parallel processing. Lecture notes in computer science, vol 7484. Springer, Berlin, pp 439–450. doi: 10.1007/978-3-642-32820-6_44
  29. 29.
    Chan EW, Heimlich MF, Purkayastha A, Van De Geijn RA (2004) On optimizing collective communication. In: 2004 IEEE international conference on cluster computing. IEEE, pp 145–155Google Scholar
  30. 30.
    Träff JL, Ripke A (2008) Optimal broadcast for fully connected processor-node networks. J Parallel Distrib Comput 68(7):887–901CrossRefzbMATHGoogle Scholar
  31. 31.
    Lastovetsky A, Rychkov V, OFlynn M, Mpiblib (2008) Benchmarking MPI communications for parallel computing on homogeneous and heterogeneous clusters. In: Recent advances in parallel virtual machine and message passing interface. Springer, New York, pp 227–238Google Scholar
  32. 32.
    Hockney RW (1994) The communication challenge for MPP: Intel Paragon and Meiko CS-2. Parallel Comput 20(3):389–398. doi: 10.1016/S0167-8191(06)80021-9 CrossRefGoogle Scholar
  33. 33.
    Fredman ML, Sedgewick R, Sleator DD, Tarjan RE (1986) The pairing heap: a new form of self-adjusting heap. Algorithmica 1(1–4):111–129MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Pettie S (2005) Towards a final analysis of pairing heaps. In: 46th annual IEEE symposium on foundations of computer science (FOCS’05). IEEE, pp 174–183Google Scholar
  35. 35.
    Ma K-L, Painter JS, Hansen CD, Krogh MF (1994) Parallel volume rendering using binary-swap compositing. Comput Graph Appl IEEE 14(4):59–68CrossRefGoogle Scholar
  36. 36.
    Yang D-L, Yu J-C, Chung Y-C (2001) Efficient compositing methods for the sort-last-sparse parallel volume rendering system on distributed memory multicomputers. J Supercomput 18(2):201–220. doi: 10.1023/A:1008165001515 CrossRefzbMATHGoogle Scholar
  37. 37.
    Gropp W, Lusk E (1999) Reproducible measurements of MPI performance characteristics. Springer, New York, pp 11–18Google Scholar
  38. 38.
    Corporation I (2013) Intel MPI benchmarks 4.1. https://software.intel.com/en-us/articles/intel-mpi-benchmarks. Accessed 1 April 2016
  39. 39.
    Hoefler T, Schneider T, Lumsdaine A (2010) Accurately measuring overhead, communication time and progression of blocking and nonblocking collective operations at massive scale. Int J Parallel Emerg Distrib Syst 25(4):241–258. doi: 10.1080/17445760902894688 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Hoefler TST, Lumsdaine A (2010) Accurately measuring overhead, communication time and progression of blocking and nonblocking collective operations at massive scale. Int J Parallel Emerg Distrib Syst 25(4):241–258MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Gropp W, Lusk E (1999) Reproducible measurements of mpi performance characteristics. In: Recent advances in parallel virtual machine and message passing interface. Springer, New York, pp 11–18Google Scholar
  42. 42.
    Reussner R, Sanders P, Träff JL, Skampi (2002) A comprehensive benchmark for public benchmarking of MPI. Sci Program 10(1):55–65Google Scholar
  43. 43.
    Grove DA, Coddington PD (2005) Communication benchmarking and performance modelling of mpi programs on cluster computers. J Supercomput 34(2):201–217CrossRefGoogle Scholar
  44. 44.
    Träff JL (2012) Mpicroscope: towards an MPI benchmark tool for performance guideline verification. In: Recent advances in the message passing interface—proceedings of 19th European MPI users’ group meeting (EuroMPI’12), Austria, pp 100–109. doi: 10.1007/978-3-642-33518-1_15
  45. 45.
    Hunold S, Carpen-Amarie A, Träff JL (2014) Reproducible MPI micro-benchmarking isn’t as easy as you think. In: Proceedings of the 21st European MPI users’ group meeting. ACM, New York, p 69Google Scholar
  46. 46.
    NIST/SEMATECH (2012) E-handbook of statistical methods. http://www.itl.nist.gov/div898/handbook/. Accessed June 2015
  47. 47.
    Buranapanichkit D, Deligiannis N, Andreopoulos Y (2015) Convergence of desynchronization primitives in wireless sensor networks: stochastic modeling approach. CoRR. arXiv:1411.2862
  48. 48.
    Deligiannis N, Mota JF, Smart G, Andreopoulos Y (2015) Fast desynchronization for decentralized multichannel medium access control. IEEE Trans Commun 63(9):3336–3349CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • P. Marendic
    • 1
    • 3
  • J. Lemeire
    • 1
    • 4
  • D. Vucinic
    • 2
  • P. Schelkens
    • 1
    • 3
  1. 1.Department of Electronics and Informatics (ETRO)Vrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Mechanical EngineeringVrije Universiteit BrusselBrusselsBelgium
  3. 3.Department of Multimedia TechnologiesiMindsGhentBelgium
  4. 4.Department of Industrial Sciences (INDI)Vrije Universiteit BrusselBrusselsBelgium

Personalised recommendations