Skip to main content
Log in

All-optical Linear Array with a Reconfigurable Pipelined Bus System (OLARPBS) optical bus parallel computing model

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The All-optical Linear Array with a Reconfigurable Pipelined Bus System (OLARPBS) optical bus parallel computing model is proposed in this paper. The OLARPBS model includes several architectural and logical extensions to the existing LARPBS(p) model. Architecturally, the extensions include the replacement of the electronic processors by fine-grained, all-optical digital processing elements; and the replacement of the optical conduit (optical bus) by one or more optical conduits, each consisting of a structural hierarchy of bundles of light paths that enable multiple parallel and/or pipelined message communications. Logically, the extensions include: parallel and/or pipelined, conduit-based, optical registers; register scheduling; and processor data path requirements. Collectively, these extensions enable register-based bits-in-flight algorithm development. A study of two applications with implementation on the OLARPBS model is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. d’Auriol BJ, Molakaseema R (2005) A parameterized linear array with a reconfigurable pipelined bus system: LARPBS(p). Comput J 48(1):115–125

    Article  Google Scholar 

  2. d’Auriol BJ (2008) The systems edge of the parameterized linear array with a reconfigurable pipelined bus system (LARPBS(p)) optical bus parallel computing model. J Supercomput 1:183–209. doi:10.1007/s11227-008-0223-z

  3. Datta A, Soundaralakshmi S, Owens R (2002) Fast sorting algorithms on a linear array with a reconfigurable pipelined bus system. IEEE Trans Parallel Distrib Syst 13(3):212–222

    Article  Google Scholar 

  4. Pan Y, Li K (1996) Linear array with a reconfigurable pipelined bus system—concepts and applications. In: Arabnia H (ed) Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’96), vol III, Sunnyvale, California, USA, pp 1431–1441

  5. d’Auriol BJ, Beltran M (2006) A historical analysis of fiber based optical bus parallel computing models. Scalable Comput Pract Exp (SCPE) 7(1):115–125

    Google Scholar 

  6. He M, Wu X, Zheng SQ (2009) An optimal and processor efficient parallel sorting algorithm on a linear array with a reconfigurable pipelined bus system. Comput Electr Eng 35(6):951–965

    Article  MATH  Google Scholar 

  7. He M, Wu X, Zheng SQ, Burkhard Englert B (2010) Optimal sorting algorithms for a simplified 2D array with reconfigurable pipelined bus system. Parallel Distrib Syst IEEE Trans 21(3):303–312

    Article  Google Scholar 

  8. Chiarulli DM, Melhem RG, Levitan SP (1987) Using coincident optical pulses for parallel memory addressing. IEEE Comput 20(12):48–58

    Article  Google Scholar 

  9. Melhem RG, Chiarulli D, Levitan S (1989) Space multiplexing of waveguides in optically interconnected multiprocessor systems. Comput J 32(4):362–369

    Article  Google Scholar 

  10. Levitan SP, Chiarulli DM, Melhem RG (1990) Coincident pulse techniques for multiprocessor interconnection structures. Appl Opt 29(4):2024–2033

    Article  Google Scholar 

  11. Chiarulli DM, Ditmore RM, Levitan SP, Melhem RG (1991) An all optical addressing circuit: experimental results and scalability analysis. J Lightwave Technol 9(12):1717–1725

    Article  Google Scholar 

  12. Chiarulli D, Levitan S, Melhem R, Bidnurkar M, Ditmore R, Gravenstreter G, Guo Z, Qiao C, Sakr M, Teza J (1994) Optoelectronic buses for high-performance computing. Proc IEEE 92(11):1701–1709

    Article  Google Scholar 

  13. d’Auriol BJ, Roldán JR (2009) An optical power budget model for the parameterized linear array with a reconfigurable pipelined bus system (LARPBS(p)) model). J Parallel Distrib Comput 69(10):815–823

    Article  Google Scholar 

  14. Uddin MR, Lim JS, Jeong YD, Won YH (2009) All-optical digital logic gates using single-mode fabry-pérot laser diode. Photonics Technol Lett IEEE 21(19):1468–1470

    Article  Google Scholar 

  15. Abdeldayem H, Frazier DO, Witherow WK, Banks CE, Penn BG, Paley MS (2008) Recent advances in photonic devices for optical super computing. In: Proceedings of the 1st International Workshop on Optical SuperComputing, OSC’08 LNCS 5172 Berlin. Springer-Verlag, Heidelberg, pp 9–32

  16. Abdeldayem H, Frazier DO, Witherow WK, Banks CE, Penn BG, Paley MS (2008) Recent advances in photonic devices for optical super computing. Presentation file: 7th International Conference on Unconventional Computation. Vienna, Austria, presentation file: (online) http://www.emcc.at/UC2008/Presentations/OSCI1.pdf. Accessed 14 Jan 2016

  17. Chattopadhyay T, Maity GK, Roy JN (2008) Designing of all-optical tri-statelogic system with the help of optical nonlinear material. J Nonlinear Opt Phys Mater 17(3):315–328

    Article  Google Scholar 

  18. Tanabe T, Notomi M, Mitsugi S, Shinya A, Kuramochi E (2005) All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl Phys Lett 87(15):1112-1–1112-3

  19. Arabnia HR, Oliver MA (1996) Arbitrary rotation of raster images with simd machine architectures. Int J Eurographics Assoc (Comput Graph Forum) 6(1):3–12

    Article  Google Scholar 

  20. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-and-data-decomposition approach. J Parallel Distrib Comput 10(2):188–193

    Article  Google Scholar 

  21. Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor—theoretical properties and algorithms. Parallel Comput 21:1783–1805

    Article  Google Scholar 

  22. Arabnia HR, Bhandarkar S (1996) Parallel stereocorrelation on a reconfigurable multi-ring network. J Supercomput 10(3):243–270

    Article  MATH  Google Scholar 

  23. Zheng S, Li K, Pan Y, Pinotti MC (2001) Generalized coincident pulse technique and new addressing schemes for time-division multiplexing optical buses. J Parallel Distrib Comput 61(8):1033–1051

    Article  MATH  Google Scholar 

  24. Pavel S, Akl SG (1995) On the power of arrays with reconfigurable optical buses. Technical Report No. 95–374, Queens University, Kingston, Ontario, CANADA

  25. Pan Y, Li K (1998) Linear array with a reconfigurable pipelined bus system. Concepts and applications. Inform Sci 106(3–4):237–258

    Article  Google Scholar 

  26. Grigoryan G, Chaltykyan V, Gazazyan E, Tikhova O (2013) All-optical four-bit toffoli gate with possible implementation in solids. Proc. SPIE 8772, 87721N–87721N-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. d’Auriol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

d’Auriol, B.J. All-optical Linear Array with a Reconfigurable Pipelined Bus System (OLARPBS) optical bus parallel computing model. J Supercomput 72, 753–769 (2016). https://doi.org/10.1007/s11227-015-1611-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-015-1611-9

Keywords

Navigation