The Journal of Supercomputing

, Volume 72, Issue 2, pp 753–769 | Cite as

All-optical Linear Array with a Reconfigurable Pipelined Bus System (OLARPBS) optical bus parallel computing model

Article

Abstract

The All-optical Linear Array with a Reconfigurable Pipelined Bus System (OLARPBS) optical bus parallel computing model is proposed in this paper. The OLARPBS model includes several architectural and logical extensions to the existing LARPBS(p) model. Architecturally, the extensions include the replacement of the electronic processors by fine-grained, all-optical digital processing elements; and the replacement of the optical conduit (optical bus) by one or more optical conduits, each consisting of a structural hierarchy of bundles of light paths that enable multiple parallel and/or pipelined message communications. Logically, the extensions include: parallel and/or pipelined, conduit-based, optical registers; register scheduling; and processor data path requirements. Collectively, these extensions enable register-based bits-in-flight algorithm development. A study of two applications with implementation on the OLARPBS model is considered.

Keywords

OLARPBS Optical bus parallel computing model Optical register Unconventional Computing Parallel algorithm 

References

  1. 1.
    d’Auriol BJ, Molakaseema R (2005) A parameterized linear array with a reconfigurable pipelined bus system: LARPBS(p). Comput J 48(1):115–125CrossRefGoogle Scholar
  2. 2.
    d’Auriol BJ (2008) The systems edge of the parameterized linear array with a reconfigurable pipelined bus system (LARPBS(p)) optical bus parallel computing model. J Supercomput 1:183–209. doi: 10.1007/s11227-008-0223-z
  3. 3.
    Datta A, Soundaralakshmi S, Owens R (2002) Fast sorting algorithms on a linear array with a reconfigurable pipelined bus system. IEEE Trans Parallel Distrib Syst 13(3):212–222CrossRefGoogle Scholar
  4. 4.
    Pan Y, Li K (1996) Linear array with a reconfigurable pipelined bus system—concepts and applications. In: Arabnia H (ed) Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’96), vol III, Sunnyvale, California, USA, pp 1431–1441Google Scholar
  5. 5.
    d’Auriol BJ, Beltran M (2006) A historical analysis of fiber based optical bus parallel computing models. Scalable Comput Pract Exp (SCPE) 7(1):115–125Google Scholar
  6. 6.
    He M, Wu X, Zheng SQ (2009) An optimal and processor efficient parallel sorting algorithm on a linear array with a reconfigurable pipelined bus system. Comput Electr Eng 35(6):951–965CrossRefMATHGoogle Scholar
  7. 7.
    He M, Wu X, Zheng SQ, Burkhard Englert B (2010) Optimal sorting algorithms for a simplified 2D array with reconfigurable pipelined bus system. Parallel Distrib Syst IEEE Trans 21(3):303–312CrossRefGoogle Scholar
  8. 8.
    Chiarulli DM, Melhem RG, Levitan SP (1987) Using coincident optical pulses for parallel memory addressing. IEEE Comput 20(12):48–58CrossRefGoogle Scholar
  9. 9.
    Melhem RG, Chiarulli D, Levitan S (1989) Space multiplexing of waveguides in optically interconnected multiprocessor systems. Comput J 32(4):362–369CrossRefGoogle Scholar
  10. 10.
    Levitan SP, Chiarulli DM, Melhem RG (1990) Coincident pulse techniques for multiprocessor interconnection structures. Appl Opt 29(4):2024–2033CrossRefGoogle Scholar
  11. 11.
    Chiarulli DM, Ditmore RM, Levitan SP, Melhem RG (1991) An all optical addressing circuit: experimental results and scalability analysis. J Lightwave Technol 9(12):1717–1725CrossRefGoogle Scholar
  12. 12.
    Chiarulli D, Levitan S, Melhem R, Bidnurkar M, Ditmore R, Gravenstreter G, Guo Z, Qiao C, Sakr M, Teza J (1994) Optoelectronic buses for high-performance computing. Proc IEEE 92(11):1701–1709CrossRefGoogle Scholar
  13. 13.
    d’Auriol BJ, Roldán JR (2009) An optical power budget model for the parameterized linear array with a reconfigurable pipelined bus system (LARPBS(p)) model). J Parallel Distrib Comput 69(10):815–823CrossRefGoogle Scholar
  14. 14.
    Uddin MR, Lim JS, Jeong YD, Won YH (2009) All-optical digital logic gates using single-mode fabry-pérot laser diode. Photonics Technol Lett IEEE 21(19):1468–1470CrossRefGoogle Scholar
  15. 15.
    Abdeldayem H, Frazier DO, Witherow WK, Banks CE, Penn BG, Paley MS (2008) Recent advances in photonic devices for optical super computing. In: Proceedings of the 1st International Workshop on Optical SuperComputing, OSC’08 LNCS 5172 Berlin. Springer-Verlag, Heidelberg, pp 9–32Google Scholar
  16. 16.
    Abdeldayem H, Frazier DO, Witherow WK, Banks CE, Penn BG, Paley MS (2008) Recent advances in photonic devices for optical super computing. Presentation file: 7th International Conference on Unconventional Computation. Vienna, Austria, presentation file: (online) http://www.emcc.at/UC2008/Presentations/OSCI1.pdf. Accessed 14 Jan 2016
  17. 17.
    Chattopadhyay T, Maity GK, Roy JN (2008) Designing of all-optical tri-statelogic system with the help of optical nonlinear material. J Nonlinear Opt Phys Mater 17(3):315–328CrossRefGoogle Scholar
  18. 18.
    Tanabe T, Notomi M, Mitsugi S, Shinya A, Kuramochi E (2005) All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl Phys Lett 87(15):1112-1–1112-3Google Scholar
  19. 19.
    Arabnia HR, Oliver MA (1996) Arbitrary rotation of raster images with simd machine architectures. Int J Eurographics Assoc (Comput Graph Forum) 6(1):3–12CrossRefGoogle Scholar
  20. 20.
    Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-and-data-decomposition approach. J Parallel Distrib Comput 10(2):188–193CrossRefGoogle Scholar
  21. 21.
    Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor—theoretical properties and algorithms. Parallel Comput 21:1783–1805CrossRefGoogle Scholar
  22. 22.
    Arabnia HR, Bhandarkar S (1996) Parallel stereocorrelation on a reconfigurable multi-ring network. J Supercomput 10(3):243–270CrossRefMATHGoogle Scholar
  23. 23.
    Zheng S, Li K, Pan Y, Pinotti MC (2001) Generalized coincident pulse technique and new addressing schemes for time-division multiplexing optical buses. J Parallel Distrib Comput 61(8):1033–1051CrossRefMATHGoogle Scholar
  24. 24.
    Pavel S, Akl SG (1995) On the power of arrays with reconfigurable optical buses. Technical Report No. 95–374, Queens University, Kingston, Ontario, CANADAGoogle Scholar
  25. 25.
    Pan Y, Li K (1998) Linear array with a reconfigurable pipelined bus system. Concepts and applications. Inform Sci 106(3–4):237–258CrossRefGoogle Scholar
  26. 26.
    Grigoryan G, Chaltykyan V, Gazazyan E, Tikhova O (2013) All-optical four-bit toffoli gate with possible implementation in solids. Proc. SPIE 8772, 87721N–87721N-6Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer EngineeringKyung Hee UniversityYonginKorea

Personalised recommendations