Advertisement

The Journal of Supercomputing

, Volume 72, Issue 2, pp 451–467 | Cite as

Synthetic aperture radar signal processing in parallel using GPGPU

  • Mónica Denham
  • Javier Areta
  • Fernando G. Tinetti
Article

Abstract

In this work an efficient parallel implementation of the Chirp Scaling Algorithm for Synthetic Aperture Radar processing is presented. The architecture selected for the implementation is the general purpose graphic processing unit, as it is well suited for scientific applications and real-time implementation of algorithms. The analysis of a first implementation led to several improvements which resulted in an important speed-up. Details of the issues found are explained, and the performance improvement of their correction explicitly shown.

Keywords

Synthetic aperture radar High performance computing  GP-GPU 

References

  1. 1.
    Abdellah M, Saleh S, Eldeib A, Shaarawi A (2012) High performance multi-dimensional (2D3D) FFTShift implementation on graphics processing units (GPUs). In: Cairo international biomedical engineering conference (CIBEC). doi: 10.1109/CIBEC.2012.6473306
  2. 2.
    Areta J, Richter S (2011) Simulador de sistema SAR. Congreso; XIV Reunión de Trabajo en Procesamiento de la Información y ControlGoogle Scholar
  3. 3.
    Bhaumik P, Nagendra G (2014) Parallel of synthetic aperture radar SAR imaging algorithms on GPU. Comput Sci J 5(1):143–146Google Scholar
  4. 4.
    Cumming I, Wong F (2005) Digital processing of synthetic aperture radar data. Artech House, NorwoodGoogle Scholar
  5. 5.
    Denham M, Areta J, Vaquila I, Tinetti F (2013) Procesamiento de señales SAR: Algoritmo RDA para GPGPU. In: XIX Congreso Argentino de Ciencias de la Computación, Red de Universidades con Carreras de Informática (RedUNCI), pp 174–183Google Scholar
  6. 6.
    Docampo J, Ramos S, Taboada G, Exposito RJ, Touriño J (2013) Evaluación de Java para computación de propósito General en GPUGoogle Scholar
  7. 7.
    Farber R (2011) CUDA application design and development, 1st edn. Morgan Kaufmann Publishers Inc., San FranciscoGoogle Scholar
  8. 8.
    Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231 (special issue on “Program generation, optimization, and platform adaptation”)Google Scholar
  9. 9.
    Hein A (2004) Processing of SAR data. Springer, New YorkCrossRefGoogle Scholar
  10. 10.
    Hwu W (2011) GPU Computing Gems Emerald Edition, 1st edn. Morgan Kaufmann Publishers Inc., San FranciscoGoogle Scholar
  11. 11.
    John Cheng TM, Grossman M (2014) Professional CUDA C programming. WroxGoogle Scholar
  12. 12.
    Kirk DB, WmW Hwu (2010) Programming massively parallel processors: a hands-on approach, 1st edn. Morgan Kaufmann Publishers Inc., San FranciscoGoogle Scholar
  13. 13.
    Kraja F, Murarasu A, Acher G, Bode A (2012) Performance evaluation of SAR image reconstruction on CPUs and GPUs. In: IEEE (ed) Aerospace conference, 2012 IEEE. IEEE, pp 1–16Google Scholar
  14. 14.
    Moreira A, Mittermayer J, Scheiber R (1996) Extended chirp scaling algorithm forair- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes. IEEE Trans Geosci Remote Sens 34(5):1123–1136CrossRefGoogle Scholar
  15. 15.
    NVIDIA (2014) CUFFT library. User guide, NVIDIAGoogle Scholar
  16. 16.
    Richards MA (2005) Fundamentals of radar signal processing. McGraw-Hill, USAGoogle Scholar
  17. 17.
    Rubin G, Sager E, Berger D (2010) GPU acceleration of SAR/ISAR imaging algorithms. In: The antenna measurement techniques association (AMTA) 2010 preliminary program, Atlanta Georgia, 10–15 Oct 2010Google Scholar
  18. 18.
    Ruetsch G, Micikevicius P (2009) Optimazing matrix transpose in CUDA. http://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf. Accessed July 2015
  19. 19.
    Skolnik MI (2000) RADAR systems. McGraw-Hill, USAGoogle Scholar
  20. 20.
    Soumekh M (1999) Synthetic aperture radar signal processing with MATLAB algorithms. Wiley-Interscience, New YorkGoogle Scholar
  21. 21.
    StackOverflow (2013) One dimensional fftshift in CUDA. http://stackoverflow.com/questions/14187481/one-dimensional-fftshift-in-cuda
  22. 22.
    Wu Y, Zhang H, Chen J (2012) A real-time SAR imaging system based on CPU–GPU heterogeneous platform. In: IEEE (ed) 11th international conference on signal processing (ICSP), 2012 IEEE, vol 1, pp 461–464. doi: 10.1109/ICoSP.2012.6491524

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mónica Denham
    • 1
    • 2
  • Javier Areta
    • 1
    • 2
  • Fernando G. Tinetti
    • 3
    • 4
  1. 1.CONICET-Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  2. 2.Laboratorio de Procesamiento de Señales Aplicado y Computación de Alto RendimientoUniversidad Nacional de Río Negro, Sede AndinaSan Carlos de BarilocheArgentina
  3. 3.Facultad de Informática, Instituto de Investigación en Informática LIDIUNLPLa PlataArgentina
  4. 4.Comisión de Investigación Científicas de la Provincia de Buenos Aires (CIC)La PlataArgentina

Personalised recommendations