Advertisement

The Journal of Supercomputing

, Volume 72, Issue 7, pp 2502–2519 | Cite as

Distributed dynamic target tracking method by block diagonalization of topological matrix

  • Weina Fu
  • Jiantao ZhouEmail author
  • Chunyan An
Article

Abstract

Today, movement recognition becomes a highlight in visual analysis. One problem in movement recognition is that existing characteristics of moving objects cannot be applied to recognize moving targets with similar color components and different color structures, which can be easily recognized by human vision. So, in this paper, a novel target tracking method is presented by both color topology and movement features. First, color topology of moving targets is extracted based on analysis of visual mechanism in human vision. In this way, the topology is processed as block diagonal matrix and divided to sub-topological matrices. Then, moving targets are recognized by both similarity of color topological matrices and movement features. Finally, a distributed dynamic tracking method is presented by the division of moving targets because of the huge computation of movement recognition and topological similarity. Experimental results show the high accuracy and real-time of the proposed method.

Keywords

Distributed dynamic method Target tracking Target partition Block diagonalization Topological matrix 

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China [Nos. 61262082, 61461039], Key Project of Chinese Ministry of Education [No. 212025], Inner Mongolia Science Foundation for Distinguished Young Scholars [2012JQ03], Program of Higher-level talents of Inner Mongolia University [125130]. The authors would like to express their heartfelt gratitude to all the volunteers in the experiments and the anonymous reviewers, for their help on this paper.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. 1.
    Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):1–45CrossRefGoogle Scholar
  2. 2.
    Li M, Kwok J, Lu B (2010) Online multiple instance learning with no regret. In: IEEE international conference on computer vision and pattern recognition, pp 1395–1401Google Scholar
  3. 3.
    Shan CF, Tan TN, Wei YC (2007) Real-time hand tracking using a mean shift embedded particle filter. Pattern Recogn 40(7):1958–1970CrossRefzbMATHGoogle Scholar
  4. 4.
    Pan P, Schonfeld D (2011) Video tracking based on sequential particle filtering on graphs. IEEE Trans Image Process 20(6):1641–1651MathSciNetCrossRefGoogle Scholar
  5. 5.
    Haritaoglu I, Flickner M (2001) Detection and tracking of shopping groups in stores. In: IEEE international conference on computer vision and pattern recognition, pp 431–438Google Scholar
  6. 6.
    Babenko B, Yang MH, Belongie S (2011) Robust object tracking With online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632CrossRefGoogle Scholar
  7. 7.
    Karavasilis V, Nikou C, Likas A (2011) Visual tracking using the Earth Mover’s Distance between Gaussian mixtures and Kalman filtering. Image Vis Comput 29(5):295–305CrossRefGoogle Scholar
  8. 8.
    Kamijo S, Matsushita Y, Ikeuchi K et al. (2000) Occlusion robust tracking utilizing spatio-temporal Markov random field model. In: 15th international conference on pattern recognition, pp 140–144Google Scholar
  9. 9.
    Yilmaz A, Xin L, Shah M (2004) Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans Pattern Anal Mach Intell 26(11):1531–1536CrossRefGoogle Scholar
  10. 10.
    Rosin P (1998) Thresholding for change detection. In: IEEE international conference on computer vision, pp 274–279Google Scholar
  11. 11.
    Leichter I, Lindenbaum M, Rivlin E (2010) Mean shift tracking with multiple reference color histograms. Comput Vis Image Understand 11(4):400–408CrossRefGoogle Scholar
  12. 12.
    Cheng YZ (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell 17(8):790–799CrossRefGoogle Scholar
  13. 13.
    Wren CR, Azarbayejani A, Darrell T et al (1997) Pfinder: real-time tracking of the human body. IEEE Trans Pattern Anal Mach Intell 19(7):780–785CrossRefGoogle Scholar
  14. 14.
    Comaniciu D, Meer P (2002) Mean shift: a robust application toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619CrossRefGoogle Scholar
  15. 15.
    Nummiaro K, Koller-Meier E, Van Gool L (2003) An adaptive color-based particle filter. Image Vis Comput 21(1):99–110CrossRefzbMATHGoogle Scholar
  16. 16.
    Collins RT, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intell 27(10):1631–1643CrossRefGoogle Scholar
  17. 17.
    Kwon J, Lee KM (2009) Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping Monte Carlo sampling. In: IEEE international conference on computer vision and pattern recognition, pp 1208–1215Google Scholar
  18. 18.
    Ross D, Lim J, Lin R, Yang M (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141CrossRefGoogle Scholar
  19. 19.
    Ross D, Tarlow D, Zemel R (2010) Learning articulated structure and motion. Int J Comput Vis 88(2):214–237CrossRefGoogle Scholar
  20. 20.
    Bai T, Li YF (2012) Robust visual tracking with structured sparse representation appearance model. Pattern Recogn 45(6):2390–2404CrossRefzbMATHGoogle Scholar
  21. 21.
    Wang Q et al (2012) Transferring visual prior for online object tracking. IEEE Trans Image Process 21(7):3296–3350MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nigam S, Khare A (2012) Curvelet transform-based technique for tracking of moving objects. IET Comput Vis 6(3):231–251MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wang D, Lu H, Yang MH (2013) Least soft-threshold squares tracking. In: IEEE computer society conference on computer vision and pattern recognition, pp 2371–2378Google Scholar
  24. 24.
    Zhang S, Yao H, Sun X et al (2013) Sparse coding based visual tracking: review and experimental comparison. Pattern Recogn 46(7):1772–1788CrossRefGoogle Scholar
  25. 25.
    Zhang K, Song H (2013) Real-time visual tracking via online weighted multiple instance learning. Pattern Recogn 46(1):397–411CrossRefzbMATHGoogle Scholar
  26. 26.
    Zhang Lu, van der Maaten L (2013) Structure preserving object tracking. In: IEEE conference on computer vision and pattern recognition, pp 1838–1845Google Scholar
  27. 27.
    Li LQ, Xie WX (2014) Intuitionistic fuzzy joint probabilistic data association filter and its application to multitarget tracking. Signal Process 96(3):433–444MathSciNetGoogle Scholar
  28. 28.
    Nian C, Nannan Z, Wenting G (2014) Object tracking using mean shift for adaptive weighted-sum histograms. Circ Syst Signal Process 33(2):483–499CrossRefGoogle Scholar
  29. 29.
    Wu Y, Ma B (2014) Learning distance metric for object contour tracking. Pattern Anal Appl 17(2):265–277MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zhuang B, Lu H, Xiao Z, Wang D (2014) Visual tracking via discriminative sparse similarity map. IEEE Trans Image Process 23(4):1872–1881MathSciNetCrossRefGoogle Scholar
  31. 31.
    Deb K (2014) Multi-objective optimization. In: Search methodologies. Springer, US, pp 403–449Google Scholar
  32. 32.
    Ghimire D (2014) Extreme learning machine ensemble using bagging for facial expression recognition. J Inf Process Syst 10(3):443–458MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lee SS, Shishibori M, Han CY (2013) An improvement video search method for VP-tree by using a trigonometric inequality. J Inf Process Syst 9(2):315–332CrossRefGoogle Scholar
  34. 34.
    Malkawi M, Murad O (2013) Artificial neuro fuzzy logic system for detecting human emotions. Hum-Cent Comput Inf Sci 3:3. doi: 10.1186/2192-1962-3-3 CrossRefGoogle Scholar
  35. 35.
    Bhattacharjee D (2014) Adaptive polar transform and fusion for human face image processing and evaluation. Hum-Cent Comput Inf Sci 4:4. doi: 10.1186/s13673-014-0004-z CrossRefGoogle Scholar
  36. 36.
    Binh NT (2015) Image contour based on context aware in complex wavelet domain. Hum-Cent Comput Inf Sci 5:14. doi: 10.1186/s13673-015-0033-2 CrossRefGoogle Scholar
  37. 37.
    Kim TJ, Kim BG, Park CS et al (2014) Efficient block mode determination algorithm using adaptive search direction information for scalable video coding (SVC). J Converg 5(1):14–19Google Scholar
  38. 38.
    Liu S, Fu W, Zhao W et al (2013) A novel fusion method by static and moving facial capture. Math Prob Eng. doi: 10.1155/2013/503924 Google Scholar
  39. 39.
    Fu W, Zhou J, Liu S et al (2014) Differential trajectory tracking with automatic learning of background reconstruction. Multimed Tools Appl. doi: 10.1007/s11042-014-2391-6 Google Scholar
  40. 40.
    Fu W, Zhou J, Ma Y (2015) Moving tracking with approximate topological isomorphism. Multimed Tools Appl. doi: 10.1007/s11042-015-2519-3 Google Scholar
  41. 41.
    Kim HI, Kim YK, Chang JW (2013) A grid-based cloaking area creation scheme for continuous LBS queries in distributed systems. J Converg 4(1):23–30Google Scholar
  42. 42.
    Tsai JC, Yen NY (2013) Cloud-empowered multimedia service: an automatic video storytelling tool. J Converg 4(3):13–19Google Scholar
  43. 43.
    Sharma R, Nitin N (2014) Duplication with task assignment in mesh distributed system. J Inf Process Syst 10(2):193–214CrossRefGoogle Scholar
  44. 44.
    Vezzani R, Cucchiara R (2010) Video surveillance online repository (visor): an integrated framework. Multimed Tools Appl 50(2):359–380CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Computer ScienceInner Mongolia UniversityHohhotChina

Personalised recommendations