Advertisement

The Journal of Supercomputing

, Volume 69, Issue 1, pp 318–329 | Cite as

Comparative evaluation of platforms for parallel Ant Colony Optimization

  • Ginés D. Guerrero
  • José M. Cecilia
  • Antonio Llanes
  • José M. García
  • Martyn Amos
  • Manuel Ujaldón
Article

Abstract

The rapidly growing field of nature-inspired computing concerns the development and application of algorithms and methods based on biological or physical principles. This approach is particularly compelling for practitioners in high-performance computing, as natural algorithms are often inherently parallel in nature (for example, they may be based on a “swarm”-like model that uses a population of agents to optimize a function). Coupled with rising interest in nature-based algorithms is the growth in heterogenous computing; systems that use more than one kind of processor. We are therefore interested in the performance characteristics of nature-inspired algorithms on a number of different platforms. To this end, we present a new OpenCL-based implementation of the Ant Colony Optimization algorithm, and use it as the basis of extensive experimental tests. We benchmark the algorithm against existing implementations, on a wide variety of hardware platforms, and offer extensive analysis. This work provides rigorous foundations for future investigations of Ant Colony Optimization on high-performance platforms.

Keywords

Heterogeneous computing Ant Colony Optimization CUDA OpenCL APU GPU 

Notes

Acknowledgments

This work is jointly supported by the Fundación Séneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grant 15290/PI/2010, by the Spanish MEC and European Commission FEDER under grant TIN2012-31345, by the UCAM under grant PMAFI/26/12, by the Junta de Andalucía under Project of Excellence P12-TIC-1741 and by the supercomputing infrastructure of the NLHPC (ECM-02). We also thank NVIDIA for hardware donation under CUDA Teaching Center 2011-14, CUDA Research Center 2012-14 and CUDA Fellow 2012-14 Awards.

References

  1. 1.
    Alba E, Luque G, Nesmachnow S (2013) Parallel metaheuristics: recent advances and new trends. Int Trans Oper Res 20(1):1–48. doi: 10.1111/j.1475-3995.2012.00862.x CrossRefzbMATHGoogle Scholar
  2. 2.
    Brodtkorb AR, Dyken C, Hagen TR, Hjelmervik JM, Storaasli OO (2010) State-of-the-art in heterogeneous computing. Sci Progr 18(1):1–33Google Scholar
  3. 3.
    Cecilia JM, Garcia JM, Nisbet A, Amos M, Ujaldón M (2013) Enhancing data parallelism for ant colony optimization on GPUs. J Parallel Distrib Comput 73(1):42–51CrossRefGoogle Scholar
  4. 4.
    Cecilia JM, Garcia JM, Ujaldon M, Nisbet A, Amos M (2011) Parallelization strategies for ant colony optimisation on GPUs. In: Proceedings of the 2011 IEEE international symposium on parallel and distributed processing. IEEE, pp 339–346Google Scholar
  5. 5.
    Chang RSS, Chang JSS, Lin PSS (2009) An ant algorithm for balanced job scheduling in grids. Future Gener Comput Syst 25(1):20–27. doi: 10.1016/j.future.2008.06.004 CrossRefGoogle Scholar
  6. 6.
    Chen Y, Miao D, Wang R (2010) A rough set approach to feature selection based on ant colony optimization. Pattern Recognit Lett 31(3):226–233. doi: 10.1016/j.patrec.2009.10.013 CrossRefGoogle Scholar
  7. 7.
    Delévacq A, Delisle P, Gravel M, Krajecki M (2013) Parallel ant colony optimization on graphics processing units. J Parallel Distrib Comput 73(1):52–61. doi: 10.1016/j.jpdc.2012.01.003 CrossRefGoogle Scholar
  8. 8.
    Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. Comput Intell Mag IEEE 1(4):28–39CrossRefGoogle Scholar
  9. 9.
    Dorigo M, Bonabeau E, Theraulaz G (2000) Ant algorithms and stigmergy. Future Gener Comput Syst 16(8):851–871CrossRefGoogle Scholar
  10. 10.
    Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation (CEC’99). IEEE Press, pp 1470–1477Google Scholar
  11. 11.
    Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B 26(1):29–41CrossRefGoogle Scholar
  12. 12.
    Dorigo M, Stutzle T (2004) Ant Colony Optimization. Bradford CompanyGoogle Scholar
  13. 13.
    Dorigo M, Stützle T (2010) Ant colony optimization: overview and recent advances. In: Handbook of metaheuristics. Springer, Berlin, pp 227–263Google Scholar
  14. 14.
    Flannery BP, Press WH, Teukolsky SA, Vetterling W (1992) Numerical recipes in c. Press Syndicate of the University of Cambridge, New YorkzbMATHGoogle Scholar
  15. 15.
    Garcia MP, Montiel O, Castillo O, Sepúlveda R, Melin P (2009) Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl Soft Comput 9(3):1102–1110. doi: 10.1016/j.asoc.2009.02.014 CrossRefGoogle Scholar
  16. 16.
    Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Professional, ReadingGoogle Scholar
  17. 17.
    He B, Govindaraju NK, Luo Q, Smith B (2007) Efficient gather and scatter operations on graphics processors. In: Proceedings of the 2007 ACM/IEEE conference on supercomputing. ACM, New York, pp 46–57Google Scholar
  18. 18.
    Johnson DS, McGeoch LA (1997) The traveling salesman problem: a case study in local optimization. In: Lenstra J, Aarts E (eds) Local search in combinatorial optimization. Wiley, New York, pp 215–310Google Scholar
  19. 19.
    Ke BR, Chen MC, Lin CL (2009) Block-layout design using max-min ant system for saving energy on mass rapid transit systems. IEEE Trans Intell Transp Syst 10(2):226–235. doi: 10.1109/TITS.2009.2018324 CrossRefGoogle Scholar
  20. 20.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 4. IEEE, pp 1942–1948Google Scholar
  21. 21.
    Komarudin Wong KY (2010) Applying ant system for solving unequal area facility layout problems. Eur J Oper Res 202(3):730–746. doi: 10.1016/j.ejor.2009.06.016 CrossRefzbMATHGoogle Scholar
  22. 22.
    Lee VW, Kim C, Chhugani J, Deisher M, Kim D, Nguyen AD, Satish N, Smelyanskiy M, Chennupaty S, Hammarlund P (2010) Debunking the 100x gpu vs. cpu myth: an evaluation of throughput computing on cpu and gpu. In: ACM international symposium on computer architecture. ACM, pp 451–460Google Scholar
  23. 23.
    Manfrin M, Birattari M, Stützle T, Dorigo M (2006) Parallel ant colony optimization for the traveling salesman problem. In: Ant colony optimization and swarm intelligence. Springer, Berlin, pp 224–234Google Scholar
  24. 24.
    Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel programming with cuda. Queue 6(2):40–53CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Pedemonte M, Nesmachnow S, Cancela H (2011) A survey on parallel ant colony optimization. Appl Soft Comput 11(8):5181–5197. doi: 10.1016/j.asoc.2011.05.042 CrossRefGoogle Scholar
  27. 27.
    Reinelt G (1991) TSPLIB—a traveling salesman problem library. ORSA J Comput 3(4):376–384. Library available at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ Google Scholar
  28. 28.
    Rozenberg G, Bäck T, Kok JN (2011) Handbook of natural computing. Springer, BerlinGoogle Scholar
  29. 29.
    Stone JE, Gohara D, Shi G (2010) OpenCL: a parallel programming standard for heterogeneous computing systems. Comput Sci Eng 12(3):66–72. doi: 10.1109/MCSE.2010.69 CrossRefGoogle Scholar
  30. 30.
    Stützle T (1998) Parallelization strategies for ant colony optimization. In: Parallel Problem Solving from Nature (PPSN V). Springer, Berlin, pp 722–731Google Scholar
  31. 31.
    Stutzle T, Hoos HH (2000) MAX-MIN ant system. Future Gener Comput Syst 16(8):889–914CrossRefGoogle Scholar
  32. 32.
    Yu B, Yang ZZ, Yao B (2009) An improved ant colony optimization for vehicle routing problem. Eur J Oper Res 196(1):171–176. doi: 10.1016/j.ejor.2008.02.028 CrossRefzbMATHGoogle Scholar
  33. 33.
    Zhu W, Curry J (2009) Parallel ant colony for nonlinear function optimization with graphics hardware acceleration. In: IEEE international conference on systems, man and cybernetics, 2009, SMC 2009. IEEE, pp 1803–1808Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ginés D. Guerrero
    • 1
  • José M. Cecilia
    • 2
  • Antonio Llanes
    • 2
  • José M. García
    • 3
  • Martyn Amos
    • 4
  • Manuel Ujaldón
    • 5
  1. 1.National Laboratory for High Performance ComputingUniversity of ChileSantiagoChile
  2. 2.Computer Science DepartmentUniversidad Católica San Antonio de MurciaMurciaSpain
  3. 3.Computer Engineering DepartmentUniversity of MurciaMurciaSpain
  4. 4.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterUK
  5. 5.Computer Architecture DepartmentUniversity of MalagaMalagaSpain

Personalised recommendations