Advertisement

The Journal of Supercomputing

, Volume 68, Issue 3, pp 1068–1087 | Cite as

Proactive task migration with a self-adjusting migration threshold for dynamic thermal management of multi-core processors

  • Bagher Salami
  • Mohammadreza Baharani
  • Hamid Noori
Article

Abstract

Request for more computation power steadily forces designers to provide more powerful processors using more number of cores on a single chip. The increasing complexity of processors leads to higher integration density, power density, and temperature. For avoiding thermal emergencies, various dynamic thermal management techniques have been presented. In this paper, we present a novel online self-adjusting temperature threshold schema for dynamic thermal management to minimize both average and peak temperature with very low performance overhead. Our proposed algorithm adjusts migration threshold according to workload and hardware platforms. The experimental results indicate that our technique can significantly decrease the average and peak temperature compared to Linux standard scheduler, and two well-known thermal management techniques: PDTM and TAS.

Keywords

Dynamic thermal management Multi-core processors Temperature threshold Dynamic Voltage Frequency Scaling (DVFS) Task migration 

References

  1. 1.
    Kong J, Chung SW, Skadron K (2012) Recent thermal management techniques for microprocessors. ACM Comput Surv 44(3):13:1–13:42CrossRefGoogle Scholar
  2. 2.
    Liu H, Lee EK, Pompili D, Kong X (2012) Thermal camera networks for large datacenters using real-time thermal monitoring mechanism. J Supercomput 64(2):1–26Google Scholar
  3. 3.
    Sheikh HF, Ahmad I, Wang Z, Ranka S (2012) An overview and classification of thermal-aware scheduling techniques for multi-core processing systems. Sustain Comput Inform Syst 2(3):151–169Google Scholar
  4. 4.
    Wang L, Khan S, Dayal J (2011) Thermal aware workload placement with task-temperature profiles in a data center. J Supercomput 61(3):780–803Google Scholar
  5. 5.
    Lee EK, Kulkarni I, Pompili D, Parashar M (2012) Proactive thermal management in green datacenters. J Supercomput 60(2):165–195CrossRefGoogle Scholar
  6. 6.
    Liu G, Fan M, Quan G (2012) Neighbor-aware dynamic thermal management for multi-core platform. In: DATE, pp 187–192Google Scholar
  7. 7.
    Hanumaiah V, Vrudhula S, Chatha KS (2011) Performance optimal online DVFS and task migration techniques for thermally constrained multi-core processors. IEEE Trans Comput Aided Des Integr Circuit Syst 30(11):1677–1690CrossRefGoogle Scholar
  8. 8.
    Cai Q, Gonzalez J, Magklis G, Chaparro P, Gonzalez A (2011) Thread shuffling: Combining DVFS and thread migration to reduce energy consumptions for multi-core systems. In: Proceedings of ISLPED, pp 379–384Google Scholar
  9. 9.
    Yun B, Shin KG, Wang S (2011) Thermal-aware scheduling of critical applications using job migration and power-gating on multi-core chips. In Proceedings of TRUSTCOM, pp 1083–1090Google Scholar
  10. 10.
    Choi J, Cher C-Y, Franke H, Hamann H, Weger A, Bose P (2007) Thermal-aware task scheduling at the system software level. In ISLPED, pp 213–218Google Scholar
  11. 11.
    Yang J, Zhou X, Chrobak M, Zhang Y, Jin L (2008) Dynamic thermal management through task scheduling. In: ISPASS, pp 191–201Google Scholar
  12. 12.
    Ge Y, Malani P, Qiu Q (2010) Distributed task migration for thermal management in many-core systems. In: DAC, pp 579–584Google Scholar
  13. 13.
    Wu G, Xu Z, Xia Q, Ren J, Xia F (2010) Task allocation and migration algorithm for temperature-constrained real-time multi-core systems. In: Proceedings of GreenCom, pp 189–196Google Scholar
  14. 14.
    Almeida G-M, Varyani S, Busseuil R, Sassatelli G, Benoit P, Torres L (2010) Evaluating the impact of task migration in multi-processor systems-on-chip. In: Proceedings of SBCCI, pp 73–78Google Scholar
  15. 15.
    Michaud P, Seznec A, Fetis D, Sazeides Y, Constantinou T (2007) A study of thread migration in temperature-constrained multicores. ACM Trans Archit Code Optim 4(2):9CrossRefGoogle Scholar
  16. 16.
    Rangan KK, Wei G-Y, Brooks D (2009) Thread motion: fine-grained power management for multi-core systems. In: Proceedings of ISCA, pp 302–313Google Scholar
  17. 17.
    Gomaa M, Powell MD, Vijaykuma TN (2004) Heat-and-run: leveraging SMT and CMP to manage power density through the operating system. In: ASPLOS, pp 260–270Google Scholar
  18. 18.
    Coskun A, Rosing T, Gross K (2008) Proactive temperature management in MPSoCs. In Proceedings of International Symposium on Low Power Electronics and Design, pp 165–170Google Scholar
  19. 19.
    Yeo I, Liu CC, Kim EJ (2008) Predictive dynamic thermal management for multicore systems. In: DAC, pp 734–739Google Scholar
  20. 20.
    Yeo I, Jung Kim E (2009) Temperature-aware scheduler based on thermal behavior grouping in multicore systems. In: DATE, pp 946–951Google Scholar
  21. 21.
    Han Y, Koren I, Moritz CA (2005) Temperature aware floorplanning. In: Second Workshop on Temperature-Aware Computer SystemsGoogle Scholar
  22. 22.
    Wang S, Bettati R (2006) Reactive speed control in temperature-constrained real-time systems. In: ECRTS, pp 73–95Google Scholar
  23. 23.
    MacKay DJC (2003) Information theory, inference, and learning algorithms. Cambridge University Press, Cambridge. Available: http://www.inference.phy.cam.ac.uk/mackay/itila/
  24. 24.
    LM Sensors Linux hardware monitoring [Online]. Available: http://www.lm-sensors.org

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Bagher Salami
    • 1
  • Mohammadreza Baharani
    • 2
  • Hamid Noori
    • 1
  1. 1.School of EngineeringFerdowsi University of MashhadMashhadIran
  2. 2.School of Electrical and Computer EngineeringUniversity of TehranTehranIran

Personalised recommendations