The Journal of Supercomputing

, Volume 68, Issue 3, pp 1402–1417 | Cite as

A new method based on PSR and EA-GMDH for host load prediction in cloud computing system

  • Qiangpeng Yang
  • Chenglei Peng
  • He Zhao
  • Yao Yu
  • Yu Zhou
  • Ziqiang Wang
  • Sidan Du


Host load prediction is one of the most effective measures for improving resource utilization in cloud computing systems. Due to the drastic fluctuation of the host load in the Cloud, accurately predicting the host load remains a challenge. In this paper, we propose a new prediction method that combines the Phase Space Reconstruction method and the Group Method of Data Handling based on an Evolutionary Algorithm. The performance of our proposed method is evaluated using two real-world load traces. The first is the load trace in a traditional distributed system, whereas the second is in a Google data center. The results show that the proposed method achieves a better prediction performance than some state-of-the-art methods.


Host load prediction Phase Space Reconstruction  Group Method of Data Handling Evolutionary Algorithm 



This work was partially supported by Grant Nos. BE2011169, BK2011563 from the Natural Science Foundation of Jiangsu Province and Grant Nos. 61100111, 61300157, 61201425, 61271231 from the Natural Science Foundation of China.


  1. 1.
    Load traces on unix systems (1997)
  2. 2.
    More google cluster data. Google reach blog (2011)
  3. 3.
    Akioka S, Muraoka Y (2004) Extended forecast of cpu and network load on computational grid. In: IEEE international symposium on cluster computing and the grid, 2004. CCGrid 2004. IEEE, pp 765–772Google Scholar
  4. 4.
    Bobroff N, Kochut A, Beaty K (2007) Dynamic placement of virtual machines for managing sla violations. In: 10th IFIP/IEEE international symposium on integrated network management, 2007. IM’07. IEEE, pp 119–128Google Scholar
  5. 5.
    Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83(403):596–610CrossRefzbMATHGoogle Scholar
  6. 6.
    Dabrowski C, Hunt F (2009) Using markov chain analysis to study dynamic behaviour in large-scale grid systems. In: Proceedings of the seventh Australasian symposium on grid computing and e-research, vol 99. Australian Computer Society, Inc., pp 29–40Google Scholar
  7. 7.
    Di S, Kondo D, Cirne W (2012) Characterization and comparison of cloud versus grid workloads. In: 2012 IEEE international conference on cluster computing (CLUSTER). IEEE, pp 230–238Google Scholar
  8. 8.
    Di S, Kondo D, Cirne W (2012) Host load prediction in a google compute cloud with a bayesian model. In: Proceedings of the international conference on high performance computing, networking, storage and analysis. IEEE Computer Society Press, p 21Google Scholar
  9. 9.
    Dinda PA, O’Hallaron DR (2000) Host load prediction using linear models. Clust Comput 3(4):265–280CrossRefGoogle Scholar
  10. 10.
    Duy TVT, Sato Y, Inoguchi Y (2011) Improving accuracy of host load predictions on computational grids by artificial neural networks. Int J Parallel Emerg Distrib Syst 26(4):275–290CrossRefGoogle Scholar
  11. 11.
    Guenter B, Jain N, Williams C (2011) Managing cost, performance, and reliability tradeoffs for energy-aware server provisioning. In: INFOCOM, 2011 Proceedings IEEE. IEEE, pp 1332–1340Google Scholar
  12. 12.
    Han M, Xi J, Xu S, Yin FL (2004) Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans Signal Process 52(12):3409–3416CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kim H, Eykholt R, Salas J (1999) Nonlinear dynamics, delay times, and embedding windows. Phys D Nonlinear Phenom 127(1):48–60CrossRefzbMATHGoogle Scholar
  14. 14.
    Nariman-Zadeh N, Darvizeh A, Jamali A, Moeini A (2005) Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process. J Mater Process Technol 164:1561–1571CrossRefGoogle Scholar
  15. 15.
    Osman S, Subhraveti D, Su G, Nieh J (2002) The design and implementation of zap: a system for migrating computing environments. ACM SIGOPS Oper Syst Rev 36(SI):361–376Google Scholar
  16. 16.
    Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45:712–716Google Scholar
  17. 17.
    Takens F (1981) Detecting strange attractors in turbulence. In: Dynamical systems and turbulence, Warwick 1980. Springer, Berlin, pp 366–381Google Scholar
  18. 18.
    Urgaonkar B, Shenoy P, Chandra A, Goyal P (2005) Dynamic provisioning of multi-tier internet applications. In: Proceedings, second international conference on autonomic computing, 2005. ICAC 2005. IEEE, pp 217–228Google Scholar
  19. 19.
    Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining lyapunov exponents from a time series. Phys D Nonlinear Phenom 16(3):285–317CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Wu Y, Yuan Y, Yang G, Zheng W (2007) Load prediction using hybrid model for computational grid. In: 2007 8th IEEE/ACM international conference on grid computing. IEEE, pp 235–242Google Scholar
  21. 21.
    Yang D, Cao J, Yu C, Xiao J (2012) A multi-step-ahead cpu load prediction approach in distributed system. In: 2012 second international conference on cloud and green computing (CGC). IEEE, pp 206–213Google Scholar
  22. 22.
    Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and research challenges. J Internet Serv Appl 1(1):7–18CrossRefGoogle Scholar
  23. 23.
    Zhang Q, Zhani MF, Zhang S, Zhu Q, Boutaba R, Hellerstein JL (2012) Dynamic energy-aware capacity provisioning for cloud computing environments. In: Proceedings of the 9th international conference on Autonomic computing. ACM, pp 145–154Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Qiangpeng Yang
    • 1
  • Chenglei Peng
    • 1
  • He Zhao
    • 1
  • Yao Yu
    • 1
  • Yu Zhou
    • 1
  • Ziqiang Wang
    • 1
  • Sidan Du
    • 1
  1. 1.School of Electronic Science and EngineeringNanjing UniversityNanjingChina

Personalised recommendations