The Journal of Supercomputing

, Volume 62, Issue 3, pp 1537–1559 | Cite as

Automatic dynamics simplification in Fast Multipole Method: application to large flocking systems

  • Seyed Naser RazaviEmail author
  • Nicolas Gaud
  • Abderrafiâa Koukam
  • Nasser Mozayani


This paper introduces a novel framework with the ability to adjust simulation’s accuracy level dynamically for simplifying the dynamics computation of large particle systems to improve simulation speed. Our new approach follows the overall structure of the well-known Fast Multipole Method (FMM) coming from computational physics. The main difference is that another level of simplification has been introduced by combining the concept of motion levels of detail from computer graphics with the FMM. This enables us to have more control on the FMM execution time and thus to trade accuracy for efficiency whenever possible. At each simulation cycle, the motion levels of detail are updated and the appropriate ones are chosen adaptively to reduce computational costs. The proposed framework has been tested on the simulation of a large dynamical flocking system. The preliminary results show a significant complexity reduction without any remarkable loss in the visual appearance of the simulation, indicating the potential use of the proposed model in more realistic situations such as crowd simulation.


Dynamics simplification Fast Multipole Method Multi-agent based simulation Flocking 


  1. 1.
    Rokhlin V (1983) Rapid solution of integral equations of classical potential theory. J Comput Phys 60(2):187–207 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2):325–348 MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Greengard L, Rokhlin V (1988) Rapid evaluation of potential fields in three dimensions. In: Lecture notes in mathematics, vol 1360. Springer, Berlin, pp 121–141 Google Scholar
  4. 4.
    Dongarra J, Sullivan F (2000) The top ten algorithms of the century. Comput Sci Eng 2(1):22–23 CrossRefGoogle Scholar
  5. 5.
    Razavi SN, Gaud N, Mozayani N, Koukam A (2011) Multi-agent based simulations using fast multipole method: application to large scale simulations of flocking dynamical systems. Artif Intell Rev 35(1):53–72 CrossRefGoogle Scholar
  6. 6.
    Razavi SN, Gaud N, Koukam A, Mozayani N (2011) Using motion levels of detail in the fast multipole method for simulation of large particle systems. In: WMSCI 2011, Orlando Google Scholar
  7. 7.
    Carlson DA, Hodgins JK (1997) Simulation levels of detail for real-time animation. In: Graphic interface, pp 1–8 Google Scholar
  8. 8.
    Chenney S, Forsyth D (1997) View-dependent culling of dynamic systems in virtual environments. In: ACM symposium on interactive 3D graphics, New York Google Scholar
  9. 9.
    Grzeszczuk R, Terzopoulos D, Hinton G (1998) Neuroanimator: fast neural network emulation and control of physics-based models. In: SIGGRAPH, New York, pp 9–29 Google Scholar
  10. 10.
    Popovic Z, Witkin A (1999) Physically based motion transformation. In: SIGGRAPH, New York, pp 11–20 Google Scholar
  11. 11.
    Brudlerlin A, Calvert TW (1996) Knowledge-driven, interactive animation of human running. In: Graphics interface, pp 213–221 Google Scholar
  12. 12.
    Granieri JP, Crabtree J, Badler NI (1995) Production and playback of human figure motion for 3d virtual environments. In: VRAIS, pp 127–135 Google Scholar
  13. 13.
    Perlin K (1995) Real time responsive animation with personality. IEEE Trans Vis Comput Graph 1(1):5–15 CrossRefGoogle Scholar
  14. 14.
    Multon F, Valton B, Jouin B, Cozot R (1999) Motion levels of detail for real-time virtual worlds. In: ASTC-VR’99 Google Scholar
  15. 15.
    Faloutsos P, van de Panne M, Terzopoulos D (2001) Composable controllers for physics-based character animation. In: SIGGRAPH 2001, New York, pp 251–260 CrossRefGoogle Scholar
  16. 16.
    O’Sullivan C, Dingliana J (2001) Collisions and perception. ACM Trans Graph 20(3) Google Scholar
  17. 17.
    O’Brien D, Fisher S, Lin MC (2001) Automatic simplification of particle system dynamics. In: Computer animation, Seoul, pp 210–257 Google Scholar
  18. 18.
    Greengard LF (1987) The rapid evaluation of potential fields in Particle systems. Yale University, New Haven, PhD Thesis Google Scholar
  19. 19.
    Barnes JE, Hut P (1986) A hierarchical O(NlogN) force calculation algorithm. Nature 324(6096):446–449 CrossRefGoogle Scholar
  20. 20.
    Hanrahan P, Salzman D, Aupperle L (1991) A rapid hierarchical radiosity algorithm. In: SIGGRAPH, New York, pp 197–206 Google Scholar
  21. 21.
    Elliott WD, Board JA (1996) Fast Fourier transform accelerated fast multipole algorithm. SIAM J Sci Comput 17(2):398–415 MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31(1):61–85 MathSciNetCrossRefGoogle Scholar
  23. 23.
    O’loan OJ, Evans MR (1999) Alternating steady state in one-dimensional flocking. J Phys, A Math Gen 32(8) Google Scholar
  24. 24.
    Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Comput Graph 21:25–34 CrossRefGoogle Scholar
  25. 25.
    Shimoyama N, Sugawara K, Mizuguchi T, Hayakawa Y, Sano M (1996) Collective motion in a system of motile elements. Phys Rev Lett 76(20):3870–3873 CrossRefGoogle Scholar
  26. 26.
    Mogilner A, Edelstein-Keshet L (1999) A non-local model for a swarm. J Math Biol 38(6):534–570 MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Toner J, Tu Y (1998) Flocks, herds, and schools: a quantitative theory of flocking. Phys Rev E 58(4):4828–4858 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Tanner HG, Jadbabaie A, Pappas GJ (2003) Stable flocking of mobile agents, part II: dynamic topology. In: 42nd IEEE conference on decision and control, Maui, Hawaii, pp 2016–2021 Google Scholar
  29. 29.
    Zhou J, Yu W, Wu X, Small M, Lu JA (2009) Flocking of multi-agent dynamical systems based on pseudo-leader. arXiv:0905.1037v1 [nlin.CD]
  30. 30.
    Olfati-Saber R (2006) Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Control 51(3):401–420 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Liu H, Fang H, Mao Y, Cao H, Jia R (2010) Distributed flocking control and obstacle avoidance for multi-agent systems. In: Control conference, Beijing, pp 4536–4541 Google Scholar
  32. 32.
    Mousavi MSR, Khaghani M, Vossoughi G (2010) Collision avoidance with obstacles in flocking for multi agent systems. In: Industrial electronics, control & robotics (IECR), Orissa, pp 1–5 CrossRefGoogle Scholar
  33. 33.
    Olfat-Saber R, Murray RM (2003) Flocking with obstacle avoidance: cooperation with limited communication in mobile networks. In: 42nd IEEE conference on in decision and control, Maui, Hawaii, pp 2022–2028 Google Scholar
  34. 34.
    Olfati-Saber R, Murray RM (2003) Consensus protocols for networks of dynamic agents. In: American control conference, Denver, pp 951–956 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Seyed Naser Razavi
    • 1
    • 2
    Email author
  • Nicolas Gaud
    • 1
    • 2
  • Abderrafiâa Koukam
    • 1
    • 2
  • Nasser Mozayani
    • 1
    • 2
  1. 1.SCOMAS Lab, Department of Computer EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Multi-Agent Systems and Applications Group, Laboratoire Systèmes et TransportsUTBMBelfortFrance

Personalised recommendations