The Journal of Supercomputing

, Volume 62, Issue 3, pp 1139–1166 | Cite as

Energy-efficient bandwidth reservation for bulk data transfers in dedicated wired networks

  • Anne-Cécile OrgerieEmail author
  • Laurent Lefèvre
  • Isabelle Guérin-Lassous


The ever increasing number of Internet-connected end-hosts calls for high-performance end-to-end networks, which in turn leads to an increase in the energy consumed by the networks. Our work deals with the energy-consumption issue in dedicated networks with bandwidth provisioning and in-advance reservations of network equipments for Bulk Data transfers.

First, we propose an end-to-end energy-cost model of such networks, which describes the energy consumed by a transfer for all the crossed equipments. This model is then used to develop a complete energy-efficient framework adapted to Bulk Data Transfers over dedicated networks. This framework enables switching unused network portions off during certain periods of time to save energy. This framework is also endowed with prediction algorithms to avoid useless switching off and with adaptive scheduling management to optimize the energy used by the transfers. Through network simulations, we show that, under given load and topology, the proposed framework can achieve 35% energy savings compared to the current approach, with no energy-management system.


Energy efficiency Energy-aware scheduling Bandwidth reservation Power management Bulk data transfer Content delivery networks Delay tolerant networks Dedicated networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Anand H, Reardon C, Subramaniyan R, George A (2006) Ethernet adaptive link rate (ALR): analysis of a MAC handshake protocol. In: IEEE conference on local computer networks Google Scholar
  3. 3.
    Ananthanarayanan G, Katz R (2008) Greening the switch. Technical report, EECS Department, University of California Google Scholar
  4. 4.
    Baldi M, Ofek Y (2009) Time for a “greener” Internet. In: GreenComm 09: International workshop on green communications Google Scholar
  5. 5.
    Baliga J, Hinton K, Tucker R (2007) Energy consumption of the Internet. In: COIN-ACOFT 2007: Joint international conference on optical Internet, and Australian conference on optical fibre technology, pp 1–3 CrossRefGoogle Scholar
  6. 6.
    Barroso LA, Holzle U (2007) The case for energy-proportional computing. Computer 40(12) Google Scholar
  7. 7.
    Bathula B, Elmirghani J (2009) Energy efficient optical burst switched (OBS) networks. In: GreenComm: international workshop on green communications Google Scholar
  8. 8.
    Bathula B, Elmirghani J (2009) Green networks: energy efficient design for optical networks. In: IFIP international conference on wireless and optical communications networks Google Scholar
  9. 9.
    Bennett M, Christensen K, Nordman B (2006) Improving the energy efficiency of Ethernet: adaptative link rate proposal Google Scholar
  10. 10.
    Blackburn J, Christensen K (2009) A simulation study of a new green bitTorrent. In: GreenCom 09: First international workshop on green communications, Dresden, Germany Google Scholar
  11. 11.
    Blanquicet F, Christensen K (2007) An initial performance evaluation of rapid PHY selection (RPS) for energy efficient Ethernet. In: Conference on local computer networks Google Scholar
  12. 12.
    Blanquicet F, Christensen K (2008) PAUSE power cycle: a new backwards compatible method to reduce energy use of Ethernet switches. Technical report, Ethernet alliance white paper Google Scholar
  13. 13.
    Burchard L-O (2005) Networks with advance reservations: applications, architecture, and performance. J Netw Syst Manag 13(4):429–449 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Burchard L-O, Droste-Franke M (2003) Fault tolerance in networks with an advance reservation service. In: 11th international workshop on quality of service (IWQoS 2003), pp 215–228 Google Scholar
  15. 15.
    Burchard L-O, Linnert B, Schneider J (2005) Rerouting strategies for networks with advance reservations. In: International conference on e-science and grid computing (E-Science) Google Scholar
  16. 16.
    Byers JW, Considine J, Mitzenmacher M, Rost S (2004) Informed content delivery across adaptive overlay networks. IEEE/ACM Trans Netw 12(5):767–780 CrossRefGoogle Scholar
  17. 17.
    Chabarek J, Sommers J, Barford P, Estan C, Tsiang D, Wright S (2008) Power awareness in network design and routing. In: INFOCOM 2008, pp 457–465 Google Scholar
  18. 18.
    Chiaraviglio L, Ciullo D, Leonardi E, Mellia M (2009) How much can the Internet be greened. In: GreenComm: international workshop on green communications Google Scholar
  19. 19.
    Chiaraviglio L, Mellia M, Ner F (2009) Energy-aware backbone networks: a case study. In: GreenCom 09: first international workshop on green communications, Dresden, Germany Google Scholar
  20. 20.
    Chiaraviglio L, Mellia M, Neri F (2008) Energy-aware networks: reducing power consumption by switching off network elements. In: FEDERICA—phosphorus tutorial and workshop (TNC) Google Scholar
  21. 21.
    Christensen K, Gunaratne C, Nordman B, George A (2004) The next frontier for communications networks: power management. Comput Commun 27(18):1758–1770 CrossRefGoogle Scholar
  22. 22.
    Eckart B, He X, Wu Q (2008) Performance adaptive UDP for high-speed bulk data transfer over dedicated links. In: IEEE international symposium on parallel and distributed processing (IPDPS 2008), pp 1–10 CrossRefGoogle Scholar
  23. 23.
    Ersoz D, Yousif MS, Das CR (2007) Characterizing network traffic in a cluster-based, multitier data center. In: International conference on distributed computing systems (ICDCS) Google Scholar
  24. 24.
    Farivar C (2007) Google’s next-gen of sneakernet. [online]
  25. 25.
    Farrell S, Cahill V, Geraghty D, Humphreys I, McDonald P (2006) When TCP breaks: delay- and disruption-tolerant networking. IEEE Internet Comput 10(4):72–78 CrossRefGoogle Scholar
  26. 26.
    Gu Y, Grossman R (2003) SABUL: a transport protocol for grid computing. J Grid Comput 1(4):377–386 zbMATHCrossRefGoogle Scholar
  27. 27.
    Gunaratne C, Christensen K, Nordman B (2005) Managing energy consumption costs in desktop PCs and LAN switches with proxying, split TCP connections, and scaling of link speed. Int J Netw Manage 15(5):297–310 CrossRefGoogle Scholar
  28. 28.
    Gunaratne C, Christensen K, Suen S (2006) Ethernet adaptative link rate (ALR): analysis of a buffer threshold policy. In: GLOBECOM’06, pp 1–6 CrossRefGoogle Scholar
  29. 29.
    Guok C, Lee J, Berket K (2008) Improving the bulk data transfer experience. Int J Internet Protocol Technol 3(1):46–53 CrossRefGoogle Scholar
  30. 30.
    Gupta M, Singh S (2003) Greening of the Internet. In: SIGCOMM ’03, pp 19–26 CrossRefGoogle Scholar
  31. 31.
    Gupta M, Singh S (2007) Dynamic Ethernet link shutdown for energy conservation on Ethernet links. In: International conference on communications (ICC ’07), pp 6156–6161 CrossRefGoogle Scholar
  32. 32.
    Gupta M, Singh S (2007) Using low-power modes for energy conservation in Ethernet LANs. In: INFOCOM 2007, pp 2451–2455 Google Scholar
  33. 33.
    He E, Leigh J, Yu O, Defanti T (2002) Reliable blast UDP: predictable high performance bulk data transfer. In: IEEE international conference on cluster computing, pp 317–324 Google Scholar
  34. 34.
    Hefeeda M, Habib A, Xu D, Bhargava B, Botev B (2005) CollectCast: a peer-to-peer service for media streaming. Multimed Syst 11(1):68–81 CrossRefGoogle Scholar
  35. 35.
    Hlavacs H, Da Costa G, Pierson J-M (2009) Energy consumption of residential and professional switches. In: International conference on computational science and engineering (CSE ’09), vol 1, pp 240–246 CrossRefGoogle Scholar
  36. 36.
    Hou T-C, Li V (1986) Transmission range control in multihop packet radio networks. IEEE Trans Commun 34(1):38–44 MathSciNetCrossRefGoogle Scholar
  37. 37.
    Irish L, Christensen K (1998) A “Green TCP/IP” to reduce electricity consumed by computers. In: Proceedings of IEEE southeastcon, pp 302–305 Google Scholar
  38. 38.
    Jacobson V, Braden R, Borman D (1992) TCP extensions for high performance. RFC 1323 Google Scholar
  39. 39.
    Jung E-S, Li Y, Ranka S, Sahni S (2008) An evaluation of in-advance bandwidth scheduling algorithms for connection-oriented networks. In: International symposium on parallel architectures, algorithms, and networks (I-SPAN 2008), pp 133–138 CrossRefGoogle Scholar
  40. 40.
    Katabi D, Handley M, Rohrs C (2002) Congestion control for high bandwidth-delay product networks. In: SIGCOMM’02, pp 89–102 Google Scholar
  41. 41.
    Laoutaris N, Smaragdakis G, Rodriguez P, Sundaram R (2009) Delay tolerant bulk data transfers on the Internet. In: SIGMETRICS’09, pp 229–238 CrossRefGoogle Scholar
  42. 42.
    Li Y, Ranka S, Sahni S (2009) In-advance path reservation for file transfers in e-science applications. In: IEEE symposium on computers and communications (ISCC 2009), pp 176–181 CrossRefGoogle Scholar
  43. 43.
    Lin Y, Wu Q (2008) On design of bandwidth scheduling algorithms for multiple data transfers in dedicated networks. In: ANCS’08: symposium on architectures for networking and communications systems, pp 151–160 CrossRefGoogle Scholar
  44. 44.
    Lin Y, Wu Q (2009) Path computation with variable bandwidth for bulk data transfer in high-performance networks. In: High-speed networks workshop (HSN 2009) Google Scholar
  45. 45.
    Lin Y, Wu Q, Rao N, Zhu M (2008) On design of scheduling algorithms for advance bandwidth reservation in dedicated networks. In: IEEE INFOCOM workshops 2008, pp 1–6 Google Scholar
  46. 46.
    Mahadevan P, Sharma P, Banerjee S, Ranganathan P (2009) A power benchmarking framework for network devices. Networking 5550:795–808 Google Scholar
  47. 47.
    Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Random Struct Algorithms 6:161–179 MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Nedevschi S, Popa L, Iannaccone G, Ratnasamy S, Wetherall D (2008) Reducing network energy consumption via sleeping and rate-adaptation. In: USENIX symposium on networked systems design & implementation (NSDI ’08), pp 323–336 Google Scholar
  49. 49.
    Nordman B, Christensen K (2010) Proxying: the next step in reducing IT energy use. Computer 43(1):91–93 CrossRefGoogle Scholar
  50. 50.
    Odlyzko A (2003) Data networks are lightly utilized, and will stay that way. Rev Netw Econ 2:210–237 CrossRefGoogle Scholar
  51. 51.
    Patel A, Zhu Y, She Q, Jue J (2009) Routing and scheduling for time-shift advance reservation. In: Conference on computer communications and networks (ICCCN 2009), pp 1–6 Google Scholar
  52. 52.
    Rajah K, Ranka S, Xia Ye (2009) Advance reservations and scheduling for bulk transfers in research networks. IEEE Trans Parallel Distrib Syst 20(11):1682–1697 CrossRefGoogle Scholar
  53. 53.
    Reinhardt W (1994) Advance reservation of network resources for multimedia applications. In: International workshop on multimedia (IWAKA 1994), pp 23–33 Google Scholar
  54. 54.
    Restrepo J, Gruber C, Machuca C (2009) Energy profile aware routing. In: IEEE international conference on communications (ICC workshops 2009), pp 1–5 CrossRefGoogle Scholar
  55. 55.
    Rosen E, Viswanathan A, Callon R (2001) Multiprotocol label switching architecture. RFC 3031 Google Scholar
  56. 56.
    Sahni S, Rao N, Ranka S, Li Y, Jung E-S, Kamath N (2007) Bandwidth scheduling and path computation algorithms for connection-oriented networks. In: Sixth international conference on networking (ICN 2007) Google Scholar
  57. 57.
    Schill A, Kühn S, Breiter F (1998) Design and evaluation of an advance reservation protocol on top of RSVP. In: International conference on broadband communications (BC’98), pp 23–40 Google Scholar
  58. 58.
    Shang L, Peh L-S, Jha N (2003) Dynamic voltage scaling with links for power optimization of interconnection networks. In: International symposium on high-performance computer architecture (HPCA03) Google Scholar
  59. 59.
    Shang L, Peh L-S, Jha N (2006) PowerHerd: a distributed scheme for dynamically satisfying peak-power constraints in interconnection networks. IEEE Trans Comput-Aided Des Integr Circuits Syst 25(1):92–110 CrossRefGoogle Scholar
  60. 60.
    Shen G, Tucker R (2009) Energy-minimized design for IP over WDM networks. J Opt Commun Netw 1(1):176–186 CrossRefGoogle Scholar
  61. 61.
    Sherwood R, Braud R, Bhattacharjee B (2004) Slurpie: a cooperative bulk data transfer protocol. In: INFOCOM 2004, vol 2, pp 941–951 Google Scholar
  62. 62.
    Silvestri A, Valenti A, Pompei S, Matera F, Cianfrani A, Coiro A (2010) Energy saving in optical transport networks exploiting transmission properties and wavelength path optimization. Opt Switching Netw 7:108–114 CrossRefGoogle Scholar
  63. 63.
    Soteriou V, Peh L-S (2003) Dynamic power management for power optimization of interconnection networks using on/off links. In: Symposium on high performance interconnects Google Scholar
  64. 64.
    Stojmenovic I, Lin X (2001) Power-aware localized routing in wireless networks. IEEE Trans Parallel Distrib Syst 12(11):1122–1133 CrossRefGoogle Scholar
  65. 65.
    Tucker R (2010) Green optical communications. Part I. Energy limitations in transport. IEEE J Sel Top Quantum Electron 99:1–15 Google Scholar
  66. 66.
    Wang H-S, Peh L-S, Malik S (2002) A Power Model for Routers: Modeling alpha 21364 and InfiniBand routers. In: Symposium on high-performance interconnects 0:21 Google Scholar
  67. 67.
    Wong S-W, Valcarenghi L, Yen S-H, Campelo D, Yamashita S, Kazovsky L (2009) Sleep mode for energy saving PONs: advantages and drawbacks. In: GreenComm: international workshop on green communications, pp 1–6 Google Scholar
  68. 68.
    Xie C, Xu F, Ghani N, Chaniotakis E, Guok C, Lehman T (2010) Load-balancing for advance reservation connection rerouting. IEEE Commun Lett, 14(6) Google Scholar
  69. 69.
    Zhang B, Sabhanatarajan K, Gordon-Ross A, George A (2008) Real-time performance analysis of adaptive link rate. In: IEEE conference on local computer networks (LCN), Montreal, Canada, pp 282–288 CrossRefGoogle Scholar
  70. 70.
    Zhang L, Deering S, Estrin D, Shenker S, Zappala D (1993) RSVP: a new resource ReSerVation protocol. IEEE Netw 7:8–18 CrossRefGoogle Scholar
  71. 71.
    Zhang Z-L, Duan Z, Hou Y (2001) On scalable design of bandwidth brokers. IEICE Trans Commun 8:2011–2025 Google Scholar
  72. 72.
    Zheng X, Mudambi A, Veeraraghavan M (2004) FRTP: fixed rate transport protocol—a modified version of SABUL for end-to-end circuits. In: First workshop on provisioning and transport for hybrid networks (PATHNets, BroadNets workshop) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Anne-Cécile Orgerie
    • 1
    Email author
  • Laurent Lefèvre
    • 1
  • Isabelle Guérin-Lassous
    • 1
  1. 1.ENS de Lyon, INRIA RESO, École Normale SupérieureUniversité Claude Bernard Lyon 1, LIP (UMR CNRS, INRIA, ENS, UCBL)Lyon Cedex 07France

Personalised recommendations