The Journal of Supercomputing

, Volume 58, Issue 3, pp 292–301 | Cite as

A parameterized shared-memory scheme for parameterized metaheuristics

  • Francisco Almeida
  • Domingo Giménez
  • Jose J. López-Espín


This paper presents a parameterized shared-memory scheme for parameterized metaheuristics. The use of a parameterized metaheuristic facilitates experimentation with different metaheuristics and hybridation/combinations to adapt them to the particular problem we are working with. Due to the large number of experiments necessary for the metaheuristic selection and tuning, parallelism should be used to reduce the execution time. To obtain parallel versions of the metaheuristics and to adapt them to the characteristics of the parallel system, a unified parameterized shared-memory scheme is developed. Given a particular computational system and fixed parameters for the sequential metaheuristic, the appropriate selection of parameters in the unified parallel scheme eases the development of parallel efficient metaheuristics.


Parallel metaheuristics Shared-memory Parameterized algorithms Algorithms optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alba E (2005) Parallel metaheuristics: a new class of algorithms. Wiley-Interscience, New York MATHCrossRefGoogle Scholar
  2. 2.
    Almeida F, Cuenca J, Giménez D, Llanes-Castro A, Martínez-Gallar JP (2009) A framework for the application of metaheuristics to tasks-to-processors assignation problems. J Supercomput. doi:10.1007/s11227-009-0309-2
  3. 3.
    Cuenca J, Giménez D, López-Espín JJ, Martínez-Gallar JP (2007) A proposal of metaheuristics to schedule independent tasks in heterogeneous memory-constrained systems. In: Proc IEEE int conf on cluster computing. IEEE Computer Society, Los Alamitos Google Scholar
  4. 4.
    Grama A, Gupta A, Karypis G, Kumar V (2003) Introduction to parallel computing, 2nd edn. Addison-Wesley, Reading Google Scholar
  5. 5.
    Greene W (1998) Econometric analysis, 3rd edn. Prentice Hall, New York Google Scholar
  6. 6.
    Gujarati D (1995) Basic econometrics. McGraw-Hill, New York Google Scholar
  7. 7.
    Lennerstad H, Lundberg L (1994) Optimal scheduling results for parallel computing. SIAM News, 16–18 Google Scholar
  8. 8.
    López-Espín JJ, Giménez D (2008) Genetic algorithms for simultaneous equation models. In: DCAI, pp 215–224 Google Scholar
  9. 9.
    OpenMP (2010) web page:
  10. 10.
    Raidl GR (2006) A unified view on hybrid metaheuristics. In: Hybrid metaheuristics, third international workshop. LNCS, vol 4030. Springer, Berlin, pp 1–12 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Francisco Almeida
    • 1
  • Domingo Giménez
    • 2
  • Jose J. López-Espín
    • 3
  1. 1.Departamento de Estadística, Investigación Operativa y ComputaciónUniversity of La LagunaLa LagunaSpain
  2. 2.Departamento de Informática y SistemasUniversity of MurciaMurciaSpain
  3. 3.Centro de Investigación OperativaUniversity Miguel HernándezElcheSpain

Personalised recommendations