Advertisement

The Journal of Supercomputing

, Volume 62, Issue 3, pp 1189–1212 | Cite as

Convert-and-Deliver: a scalable multicast optical cross-connect with reduced power splitting fan-out

  • Haitham S. HamzaEmail author
Article

Abstract

Powerful computing systems interconnected via high-bandwidth wavelength division multiplexing (WDM) fibers are becoming inevitable to meet the needs of emerging computation and communication applications. Enabling multicast over WDM links requires the use of multicast-capable optical cross-connects (MC-OXCs) equipped with power splitters to replicate and interconnect an input signal on a particular wavelength to one or more output fibers, possibly on different wavelengths. All existing design approaches for FW×FW strictly nonblocking MC-OXCs with F fibers, each carries W wavelengths require the use of power splitters with a fan-out degree of O(FW). For typical large values of F and W, complex and power-consuming active devices are needed to compensate for the lost power due to splitting. In this paper, we propose a new class of strictly nonblocking MC-OXC, namely, the Convert-and-Deliver (CAD) cross-connect to reduce power consumption. The new CAD OXC uses power splitters with a fan-out degree of only O(F) instead of O(FW). It is shown that, making the fan-out degree independent of W in the proposed design does not only reduce splitting power loss considerably, but it also enhances the scalability of the design. In particular, for any value of F, upgrading the number of wavelengths per fiber does not incur any changes to the fan-out degree or the power loss in the used splitters; a feature that cannot be obtained with any existing MC-OXC design approach.

Keywords

Optical multicast WDM Optical cross-connects (OXC) Wavelength converters Multicast converters Strictly nonblocking switching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leisching P, Pickavet M (2009) Energy footprint of ICT: forecasts and network solutions. In: Workshop at OFC/NFOEC’09, March 2009 Google Scholar
  2. 2.
    Simeonidou D, Pickavet M (2009) Green optical networks report. Building the future optical network in Europe (BONE) project. December. http://www.ict-bone.eu/portal/landing_pages/bone_deliverables.html
  3. 3.
    Smarr LL et al (2003) The OptIPuter. Commun ACM 46:59–66 CrossRefGoogle Scholar
  4. 4.
    Yang Y, Wang J (2004) Designing WDM optical interconnects with full connectivity by using limited wavelength conversion. IEEE Trans Comput 53(12):1547–1556 CrossRefGoogle Scholar
  5. 5.
    Yang Y, Wang J (2005) Cost-effective designs of WDM optical interconnects. IEEE Trans Parallel Distrib Syst 16(1):51–66 CrossRefGoogle Scholar
  6. 6.
    Chen Y, Tang W (2010) Reconfigurable asymmetric optical burst switching for concurrent DWDM multimode switching: architecture and research directions. IEEE Commun Mag 48(5):57–65 CrossRefGoogle Scholar
  7. 7.
    Han G, Yang Y (2007) Scheduling and performance analysis of multicast interconnects. J Supercomput 40:109–125 CrossRefGoogle Scholar
  8. 8.
    Yang Y, Wang J, Qiao C (2000) Nonblocking WDM multicast OXCs. IEEE Trans Parallel Distrib Syst 11(12):1274–1287 CrossRefGoogle Scholar
  9. 9.
    Pan Z, Yang H, Yang J, Hu J, Zhu Z, Cao J, Okamoto K, Yamano S, Akella V, Yoo SJB (2005) Advanced optical-label routing system supporting multicast, optical TTL, and multimedia applications. J Lightwave Technol 23(10):3270–3281 CrossRefGoogle Scholar
  10. 10.
    Mukherjee B (2000) WDM optical communication networks: progress and challenges. IEEE J Sel Areas Commun 18(10):1810–1824 CrossRefGoogle Scholar
  11. 11.
    Ali M, Deogun JS (2000) Power-efficient design of multicast wavelength-routed networks. IEEE J Sel Areas Commun 18(10):1852–1862 CrossRefGoogle Scholar
  12. 12.
    Pan D, Anand V, Ngo HQ (2004) Cost-effective constructions for nonblocking WDM multicast OXCs. In: IEEE ICC 04, pp 1801–1805 Google Scholar
  13. 13.
    Poo G-S, Zhou Y (2006) A new multicast wavelength assignment algorithm in wavelength-routed WDM networks. IEEE J Sel Areas Commun 24(4):2–12 CrossRefGoogle Scholar
  14. 14.
    Ngo HQ, Pan D, Qiao C (2004) Nonblocking WDM switches based on arrayed waveguide grating and limited wavelength conversion. In: Proc of the 23rd annual joint conference of the IEEE computer and communications societies (INFOCOM 04) vol 2, pp 1352–1362 Google Scholar
  15. 15.
    Ngo HQ, Pan D, Yang Y (2007) Optical switching networks with minimum number of limited-range wavelength converters. IEEE/ACM Trans Netw 15(4):969–979 CrossRefGoogle Scholar
  16. 16.
    Sankaranarayanan S, Subramaniam S (2002) Comprehensive performance modeling and analysis of multicasting in optical networks. IEEE J Sel Areas Commun 20:202–215 CrossRefGoogle Scholar
  17. 17.
    Liang W (2004) Constructing multiple light multicast trees in WDM optical networks. In: Proc. 7th international symposium on parallel architectures, algorithms and networks, pp 482–488 CrossRefGoogle Scholar
  18. 18.
    Xin Y, Rouskas GN (2004) Multicast routing under optical layer constraints. In: Proc of IEEE INFOCOM ’04, vol 4, pp 2731–2742 Google Scholar
  19. 19.
    Hu WS, Zeng QJ (1998) Multicasting optical cross connects employing splitter-and-delivery switch. IEEE Photonics Technol Lett 10(7):970–972 CrossRefGoogle Scholar
  20. 20.
    Eramo V, Listanti M (2009) Power consumption in bufferless optical packet switches in SOA technology. J Opt Commun Netw 1(3):B15–B29 CrossRefGoogle Scholar
  21. 21.
    Hamza HS, Deogun JS (2006) Strictly nonblocking multicasting WDM optical cross connects using multiwavelength converters. In: Proc. of 14th IEEE symposium on high-performance interconnects (HOTI’06), pp 37–44 CrossRefGoogle Scholar
  22. 22.
    Chow CW, Wong CS, Tsang HK (2003) 8×10 Gb/s multi-wavelength injection locking of a FP laser diode for WDM multicast. In: Proc 16th IEEE annual meeting of lasers and electro-optics society (LEOS 2003), vol 2, pp 682–683 CrossRefGoogle Scholar
  23. 23.
    Contestabile G, Presi M, Ciaramella E (2004) Multiple wavelength conversion for WDM multicasting by FWM in an SOA, IEEE Photonics Technol Lett 16(7):1775–1777 CrossRefGoogle Scholar
  24. 24.
    Morioka K, Mori K, Kawanishi S, Saruwatari M (1994) Pulse-width tunable, self-frequency conversion of short optical pulses over 200 nm based on supercontinuum generation. Electron Lett 30:1960–1962 CrossRefGoogle Scholar
  25. 25.
    Futami F, Okabe R, Tacita Y, Watanabe S (2003) Transparent wavelength conversion at up to 160 Gb/s by using supercontinuum generation in a nonlinear fiber. In: Proc optical amplifiers and their applications, OAA ’03, Paper MD07 Google Scholar
  26. 26.
    Pleumeekers JL, Leuthold J, Kauer M, Bernasocni P, Burrus CA, Cappuzzo M, Chen E, Gomez L, Laskowski E (2002) All-optical wavelength conversion and broadcasting to eight separate channels by a single semiconductor optical amplifier delay interferometer. In: Proc optical fiber communications OFC ’02, pp 596–597 Google Scholar
  27. 27.
    Kalogerakis G, Marhic ME, Kazovsky LG (2005) Multiple-wavelength conversion with gain by a high-repetition-rate pulsed-pump fiber OPA. IEEE/OSA J Lightwave Technol 23(10):2954–2960 CrossRefGoogle Scholar
  28. 28.
    Yamazaki E, Tadanaga O, Takada A, Asobe M, Yamawaku J, Morioka T (2004) Simultaneous and arbitrary wavelength conversion of WDM signals using multiple wavelength quasi phase matched LiNbo3 waveguide. In: Optical fiber communications OFC ’04, Paper FL6 Google Scholar
  29. 29.
    Yamada E, Sanjoh H, Ishikawa M, Yoshikuni Y (2003) High-speed wavelength switching in wavelength conversion using spectral duplication. In: Optical fiber communications OFC ’03, Paper MF93 Google Scholar
  30. 30.
    Zhou J, Cadeddu R, Casaccia E, Cavazzoni C, O’Mahony MJ (1996) Crosstalk in multiwavelength optical cross-connect networks. J Lightwave Technol 14:1423–1435 CrossRefGoogle Scholar
  31. 31.
    Contestabile G, Calabretta N, Proietti R, Ciaramella E (2006) Double-stage cross-gain modulation in SOAs: an effective technique for WDM multicasting. IEEE Photonics Technol Lett 18(1):181–183 CrossRefGoogle Scholar
  32. 32.
    Krcmarik D, Karasek M, Radil J, Vojtech J (2007) Multi-wavelength conversion at 10 Gb/s using cross-phase modulation in highly nonlinear fiber. J Opt Commun 278(2):402–412 CrossRefGoogle Scholar
  33. 33.
    Karasek M, Honzatko P, Radil J, Vojtech J (2008) Multi-wavelength conversion at 10 Gb/s and 40 GHz using a hybrid integrated SOA Mach–Zehnder interferometer. In: Proc of int conf on transparent optical networks (ICTON 2008), vol 1, pp 22–26, June 2008 Google Scholar
  34. 34.
    Bres C-S, Wiberg AOJ, Kuo BP-P, Alic N, Radic S (2009) Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier. IEEE Photonics Technol Lett 21(14):1002–1004 CrossRefGoogle Scholar
  35. 35.
    Eramo V, Listanti M (2006) Performance analysis of optical packet equipped with multicast wavelength converters. OSA J Opt Netw 5:82–96 CrossRefGoogle Scholar
  36. 36.
    Qin X, Yang Y (2002) Nonblocking WDM switching networks with full and limited wavelength conversion. IEEE Trans Commun 50(12):2032–2041 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Information TechnologyCairo UniversityGizaEgypt

Personalised recommendations