Abstract
The aim of the paper is twofold. First, we want to recapture the genesis of the logics of order. The origin of this notion is traced back to the work of Jerzy Kotas, Roman Suszko, Richard Routley and Robert K. Meyer. A further development of the theory of logics of order is presented in the papers of Jacek K. Kabziński. Quite contemporarily, this notion gained in significance in the papers of Carles Noguera and Petr Cintula. Logics of order are named there logics of weak implications. They play a crucial role in their monograph (Noguera and Cintula Logic and Implication. An Introduction to the General Algebraic Study of Non-Classical Logics, Trends in Logic 57, Springer, Berlin, 2021). But, more importantly, the other goal is to define some subclasses of the logics of order in reference to later results of Jacek K. Kabziński and Michael Dunn. The original conception of implication is due to Kabziński. Implication is a stronger notion than the notion of the connective of order aka weak implication. As a result, the three subclasses of logics of order are isolated: logics of implication, logics of symmetry, and tonoidal logics. These notions are uniformly defined and investigated from various viewpoints in terms of consequence operations. The emphasis is put on their semantics.
This is a preview of subscription content, access via your institution.
References
Blok, W., and D. Pigozzi, Protoalgebraic logics, Studia Logica, 45(4): 337–369, 1986.
Blok, W., and D. Pigozzi, Algebraizable Logics, no. 396 in Memoirs of AMS, American Mathematical Society, Providence, 1989.
Bonevac, D., and J. Dever, A History of The Connectives, in Logic: A History of its Central Concepts, Elsevier, 2012, pp. 175–233.
Butler, K.K.-H., The number of partially ordered sets, Journal of Combinatorial Theory, Series B, 13(3): 276–289, 1972.
Czelakowski, J., Protoalgebraic Logics, vol. 10 of Trends in Logic, Kluwer, Dordrecht, 2001.
Davey, B. A., and H. A. Priestley, Introduction to Lattices and Order, 2 edn., Cambridge University Press, Cambridge, 2002.
Dunn, J. M., and G. Hardegree, Algebraic Methods in Philosophical Logic, vol. 41 of Oxford Logic Guides, Oxford Science Publications, Oxford University Press, New York, 2001.
Font, J. M., Abstract Algebraic Logic. An Introductory Textbook, College Publications, London, 2016.
Humberstone, L., The Connectives, MIT Press, Cambridge, 2011.
Kabziński, J., Investigations into the Equivalence Connective, no. 48 in Rozprawy Habilitacyjne, Jagiellonian University, Cracow, 1980.
Kabziński, J., Toward the source of the notion of implication, Bulletion of the Section of Logic, 9(4):180–182. 1980
Kabziński, J., O modelach porządkowych (On Ordered Models in Logic), 1980x. In Polish, manuscript.
Kabziński, J., Absurd określający negację, (Absurd defining negation), Polish.The work dedicated to Professor Władysław Stróżewski on his 70th birthday and the occasion of receiving honorary degree from Jagiellonian University, Institute of Philosophy, Jagiellonian University, Kraków, 2003.
Kabziński, J., and A. Wroński, On equivalential algebras, in Proceedings of the 1975 International Symposium on Multiple-Valued Logics, Indiana University, Bloomington, May 13–16, 1975, IEEE Comput. Soc, Long Beach, California, 1975, pp. 419–428.
Kotas, J., Logical systems with implication, Studia Logica, 28:101–115, 1972.
Kotas, J., and A. Pieczkowski, Allgemeine logische und mathematische theorien, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 21:353–376, 1970.
Malinowski, J., Equivalence in Intensional Logics, Polish Academy of Sciences, Institute of Philosophy and Sociology, Warsaw, 1989.
Mates, B., Stoic Logic, University of California Press, Berkeley, 1961.
Noguera, C., and P. Cintula, Logic and Implication. An Introduction to the General Algebraic Study of Non-Classical Logics, vol. 57 of Trends in Logic, Springer, Berlin, 2021.
O’Toole, R., and R. E. Jennings, The Megarians and the Stoics, in Greek, Indian and Arabic Logic, vol. 1 of Handbook of the History of Logic, Elsevier, Amsterdam, 2004, pp. 398–522.
Priest, G., An Introduction to Non-classical Logic, Cambridge University Press, London, 2008.
Prucnal, T., and A. Wroński, An algebraic characterization of the notion of structural completeness, Bulletin of the Section of Logic, 3(1): 30–33, 1974.
Rasiowa, H., O pewnym fragmencie implikacyjnego rachunku zdań, Studia Logica, 3(1):208–222, 1955 (in Polish; Master Thesis 1945).
Rasiowa, H., An Algebraic Approach to Non-classical Logics, PWN, Warszawa, 1974.
Rautenberg, W., 2-Element matrices, Studia Logica, 40 (1981), 4, 315–353.
Routley, R., and R. K. Meyer, Towards a general semantical theory of implication and conditionals i. systems with normal conjunctions and disjunctions and aberrant and normal negations, Reports on Mathematical Logics, 4: 67–90, 1975.
Routley, R., and R. K. Meyer, Towards a general semantical theory of implication and conditionals II. Improved negation theory and propostional identity, Reports on Mathematical Logics, 9: 47–62, 1977.
Suszko, R., Identity connective and modality, Studia Logica, 27(1): 7–39, 1971.
Suszko, R., Equational logic and theories in sentential languages, Colloquium Mathematicum, 29(1): 19–23, 1974.
Suszko, R., The connective of order (polish), in A Report from the Autumn School of Logic, Międzygórze, November 21–29, 1977, mimeographed notes, edited and compiled by Grzegorz Malinowski and Jan Zygmunt. Restricted distribution, 1977, pp. 10–11. (The part of the Report containing Suszko’s talks will be published in 2021 by Poznan University).
Tkaczyk, M., Zmienna czasowa w starożytnej i średniowiecznej teorii zdań warunkowych, Roczniki Filozoficzne, 55(2): 99–121, 2007.
White, M. J., The fourth account of conditionals in sextus empiricus, History and Philosophy of Logic, 7(1): 1–14, 1986.
Wójcicki, R., Theory of Logical Calculi. Basic Theory of Consequence Operations, vol. 199 of Synthese Library, Springer Netherlands, 1988.
Wroński, A., A three-element matrix whose consequence operation is not finitely based, Bulletion of the Section of Logic, 8(2):68–71, 1979.
Acknowledgements
The authors wish to express their sincere thanks to the anonymous referees for suggesting various improvements and making corrections of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Presented by Heinrich Wansing
Dedicated to the memory of Jacek Kabziński.
Rights and permissions
About this article
Cite this article
Czelakowski, J., Olszewski, A. Logics of Order and Related Notions. Stud Logica 110, 1417–1464 (2022). https://doi.org/10.1007/s11225-022-10009-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11225-022-10009-2
Keywords
- Logic of order
- Logic of symmetry
- Logic of implication
- Tonoidal logic
- Consequence operation