Skip to main content

Logics of Order and Related Notions


The aim of the paper is twofold. First, we want to recapture the genesis of the logics of order. The origin of this notion is traced back to the work of Jerzy Kotas, Roman Suszko, Richard Routley and Robert K. Meyer. A further development of the theory of logics of order is presented in the papers of Jacek K. Kabziński. Quite contemporarily, this notion gained in significance in the papers of Carles Noguera and Petr Cintula. Logics of order are named there logics of weak implications. They play a crucial role in their monograph (Noguera and Cintula Logic and Implication. An Introduction to the General Algebraic Study of Non-Classical Logics, Trends in Logic 57, Springer, Berlin, 2021). But, more importantly, the other goal is to define some subclasses of the logics of order in reference to later results of Jacek K. Kabziński and Michael Dunn. The original conception of implication is due to Kabziński. Implication is a stronger notion than the notion of the connective of order aka weak implication. As a result, the three subclasses of logics of order are isolated: logics of implication, logics of symmetry, and tonoidal logics. These notions are uniformly defined and investigated from various viewpoints in terms of consequence operations. The emphasis is put on their semantics.

This is a preview of subscription content, access via your institution.


  1. Blok, W., and D. Pigozzi, Protoalgebraic logics, Studia Logica, 45(4): 337–369, 1986.

    Article  Google Scholar 

  2. Blok, W., and D. Pigozzi, Algebraizable Logics, no. 396 in Memoirs of AMS, American Mathematical Society, Providence, 1989.

  3. Bonevac, D., and J. Dever, A History of The Connectives, in Logic: A History of its Central Concepts, Elsevier, 2012, pp. 175–233.

  4. Butler, K.K.-H., The number of partially ordered sets, Journal of Combinatorial Theory, Series B, 13(3): 276–289, 1972.

    Article  Google Scholar 

  5. Czelakowski, J., Protoalgebraic Logics, vol. 10 of Trends in Logic, Kluwer, Dordrecht, 2001.

    Google Scholar 

  6. Davey, B. A., and H. A. Priestley, Introduction to Lattices and Order, 2 edn., Cambridge University Press, Cambridge, 2002.

    Book  Google Scholar 

  7. Dunn, J. M., and G. Hardegree, Algebraic Methods in Philosophical Logic, vol. 41 of Oxford Logic Guides, Oxford Science Publications, Oxford University Press, New York, 2001.

  8. Font, J. M., Abstract Algebraic Logic. An Introductory Textbook, College Publications, London, 2016.

    Google Scholar 

  9. Humberstone, L., The Connectives, MIT Press, Cambridge, 2011.

    Book  Google Scholar 

  10. Kabziński, J., Investigations into the Equivalence Connective, no. 48 in Rozprawy Habilitacyjne, Jagiellonian University, Cracow, 1980.

  11. Kabziński, J., Toward the source of the notion of implication, Bulletion of the Section of Logic, 9(4):180–182. 1980

    Google Scholar 

  12. Kabziński, J., O modelach porządkowych (On Ordered Models in Logic), 1980x. In Polish, manuscript.

  13. Kabziński, J., Absurd określający negację, (Absurd defining negation), Polish.The work dedicated to Professor Władysław Stróżewski on his 70th birthday and the occasion of receiving honorary degree from Jagiellonian University, Institute of Philosophy, Jagiellonian University, Kraków, 2003.

  14. Kabziński, J., and A. Wroński, On equivalential algebras, in Proceedings of the 1975 International Symposium on Multiple-Valued Logics, Indiana University, Bloomington, May 13–16, 1975, IEEE Comput. Soc, Long Beach, California, 1975, pp. 419–428.

  15. Kotas, J., Logical systems with implication, Studia Logica, 28:101–115, 1972.

    Article  Google Scholar 

  16. Kotas, J., and A. Pieczkowski, Allgemeine logische und mathematische theorien, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 21:353–376, 1970.

    Article  Google Scholar 

  17. Malinowski, J., Equivalence in Intensional Logics, Polish Academy of Sciences, Institute of Philosophy and Sociology, Warsaw, 1989.

    Google Scholar 

  18. Mates, B., Stoic Logic, University of California Press, Berkeley, 1961.

    Google Scholar 

  19. Noguera, C., and P. Cintula, Logic and Implication. An Introduction to the General Algebraic Study of Non-Classical Logics, vol. 57 of Trends in Logic, Springer, Berlin, 2021.

  20. O’Toole, R., and R. E. Jennings, The Megarians and the Stoics, in Greek, Indian and Arabic Logic, vol. 1 of Handbook of the History of Logic, Elsevier, Amsterdam, 2004, pp. 398–522.

  21. Priest, G., An Introduction to Non-classical Logic, Cambridge University Press, London, 2008.

    Book  Google Scholar 

  22. Prucnal, T., and A. Wroński, An algebraic characterization of the notion of structural completeness, Bulletin of the Section of Logic, 3(1): 30–33, 1974.

    Google Scholar 

  23. Rasiowa, H., O pewnym fragmencie implikacyjnego rachunku zdań, Studia Logica, 3(1):208–222, 1955 (in Polish; Master Thesis 1945).

  24. Rasiowa, H., An Algebraic Approach to Non-classical Logics, PWN, Warszawa, 1974.

    Google Scholar 

  25. Rautenberg, W., 2-Element matrices, Studia Logica, 40 (1981), 4, 315–353.

    Article  Google Scholar 

  26. Routley, R., and R. K. Meyer, Towards a general semantical theory of implication and conditionals i. systems with normal conjunctions and disjunctions and aberrant and normal negations, Reports on Mathematical Logics, 4: 67–90, 1975.

    Google Scholar 

  27. Routley, R., and R. K. Meyer, Towards a general semantical theory of implication and conditionals II. Improved negation theory and propostional identity, Reports on Mathematical Logics, 9: 47–62, 1977.

    Google Scholar 

  28. Suszko, R., Identity connective and modality, Studia Logica, 27(1): 7–39, 1971.

    Article  Google Scholar 

  29. Suszko, R., Equational logic and theories in sentential languages, Colloquium Mathematicum, 29(1): 19–23, 1974.

    Article  Google Scholar 

  30. Suszko, R., The connective of order (polish), in A Report from the Autumn School of Logic, Międzygórze, November 21–29, 1977, mimeographed notes, edited and compiled by Grzegorz Malinowski and Jan Zygmunt. Restricted distribution, 1977, pp. 10–11. (The part of the Report containing Suszko’s talks will be published in 2021 by Poznan University).

  31. Tkaczyk, M., Zmienna czasowa w starożytnej i średniowiecznej teorii zdań warunkowych, Roczniki Filozoficzne, 55(2): 99–121, 2007.

    Google Scholar 

  32. White, M. J., The fourth account of conditionals in sextus empiricus, History and Philosophy of Logic, 7(1): 1–14, 1986.

    Article  Google Scholar 

  33. Wójcicki, R., Theory of Logical Calculi. Basic Theory of Consequence Operations, vol. 199 of Synthese Library, Springer Netherlands, 1988.

  34. Wroński, A., A three-element matrix whose consequence operation is not finitely based, Bulletion of the Section of Logic, 8(2):68–71, 1979.

    Google Scholar 

Download references


The authors wish to express their sincere thanks to the anonymous referees for suggesting various improvements and making corrections of the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Adam Olszewski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by Heinrich Wansing

Dedicated to the memory of Jacek Kabziński.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Czelakowski, J., Olszewski, A. Logics of Order and Related Notions. Stud Logica 110, 1417–1464 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Logic of order
  • Logic of symmetry
  • Logic of implication
  • Tonoidal logic
  • Consequence operation