Skip to main content
Log in

Undecidability of First-Order Modal and Intuitionistic Logics with Two Variables and One Monadic Predicate Letter

Studia Logica Aims and scope Submit manuscript

A Correction to this article was published on 23 December 2021

This article has been updated

Abstract

We prove that the positive fragment of first-order intuitionistic logic in the language with two individual variables and a single monadic predicate letter, without functional symbols, constants, and equality, is undecidable. This holds true regardless of whether we consider semantics with expanding or constant domains. We then generalise this result to intervals \([\mathbf{QBL}, \mathbf{QKC}]\) and \([\mathbf{QBL}, \mathbf{QFL}]\), where QKC is the logic of the weak law of the excluded middle and QBL and QFL are first-order counterparts of Visser’s basic and formal logics, respectively. We also show that, for most “natural” first-order modal logics, the two-variable fragment with a single monadic predicate letter, without functional symbols, constants, and equality, is undecidable, regardless of whether we consider semantics with expanding or constant domains. These include all sublogics of QKTB, QGL, and QGrz—among them, QK, QT, QKB, QD, QK4, and QS4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Change history

References

  1. Behmann, H., Beiträige zür algebra der logik, inbesondere zum entscheidungsproblem, Mathematische Annalen 86:163–229, 1922.

    Article  Google Scholar 

  2. Berger, R., The Undecidability of the Domino Problem, volume 66 of Memoirs of AMS. AMS, 1966.

  3. Börger, E., E. Grädel, and Y. Gurevich, The Classical Decision Problem. Springer, 1997.

  4. Chagrov, A., and M. Rybakov, How many variables does one need to prove PSPACE-hardness of modal logics? in Advances in Modal Logic, vol. 4, 2003, pp. 71–82.

  5. Chagrov, A., and M. Zakharyaschev, Modal Logic. Oxford University Press, 1997.

  6. Church, A., A note on the “Entscheidungsproblem”, The Journal of Symbolic Logic 1:40–41, 1936.

    Article  Google Scholar 

  7. Feys, R., Modal Logics. E. Nauwelaerts, 1965.

  8. Gabbay, D. M., Semantical Investigations in Heyting’s Intuitionistic Logic. D. Reidel, 1981.

  9. Gödel, K., Zum Entsheidungsproblem des logischen Funktionenkalküls, Monatschefte für Mathematische Physika 40:433–443, 1933.

    Google Scholar 

  10. Grädel, E., P. G. Kolaitis, and M. Y. Vardi, On the decision problem for two-variable first-order logic, Bulletin of Symbolic Logic 3(1):53–69, 1997.

    Article  Google Scholar 

  11. Halpern, J. Y., The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic, Artificial Intelligence 75(2):361–372, 1995.

    Article  Google Scholar 

  12. Kontchakov, R., A. Kurucz, and M. Zakharyaschev, Undecidability of first-order intuitionistic and modal logics with two variables, Bulletin of Symbolic Logic 11(3):428–438, 2005.

    Article  Google Scholar 

  13. Kremer, P., On the complexity of propositional quantification in intuitionistic logic, The Journal of Symbolic Logic 62(2):529–544, 1997.

    Article  Google Scholar 

  14. Kripke, S., The undecidability of monadic modal quantification theory, Zeitschrift für Matematische Logik und Grundlagen der Mathematik 8:113–116, 1962.

    Article  Google Scholar 

  15. Maslov, S., G. Mints, and V. Orevkov, Unsolvability in the constructive predicate calculus of certain classes of formulas containing only monadic predicate variables, Soviet Mathematics Doklady 6:918–920, 1965.

  16. Montagna, F., The predicate modal logic of provability, Notre Dame Journal of Formal Logic 25(2):179–189, 1984.

    Article  Google Scholar 

  17. Mortimer, M., On languages with two variables, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 1975, pp. 135–140.

  18. Nerode, A., and R. A. Shore, Second order logic and first order theories of reducibility ordering, in J. Barwise, H. J. Keisler, and K. Kunen, (eds.), The Kleene Symposium, North-Holland, 1980, pp. 181–200.

  19. Nishimura, I., On formulas of one variable in intuitionistic propositional calculus, The Journal of Symbolic Logic 25(4):327–331, 1960.

    Article  Google Scholar 

  20. Rybakov, M., Enumerability of modal predicate logics and the condition of non-existence of infinite ascending chains, Logicheskiye Issledovaniya 8:155–167, 2001.

    Google Scholar 

  21. Rybakov, M., Complexity of intuitionistic propositional logic and its fragments, Journal of Applied Non-Classical Logics 18(2–3):267–292, 2008.

    Article  Google Scholar 

  22. Rybakov, M., and D. Shkatov, Complexity and expressivity of propositional dynamic logics with finitely many variables. Logic Journal of the IGPL, 10.1093/jigpal/jzy014.

  23. Rybakov, M., and D. Shkatov, Complexity of finite-variable fragments of propositional modal logics of symmetric frames. Logic Journal of the IGPL, 10.1093/jigpal/jzy018.

  24. Surányi, J., Zur Reduktion des Entscheidungsproblems des logischen Funktioskalküls, Mathematikai és Fizikai Lapok 50:51–74, 1943.

    Google Scholar 

  25. Visser, A., A propositional logic with explicit fixed points, Studia Logica 40:155–175, 1981.

    Article  Google Scholar 

  26. Wolter, F., and M. Zakharyaschev, Decidable fragments of first-order modal logics, The Journal of Symbolic Logic 66:1415–1438, 2001.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referees for comments that helped to significantly improve the presentation of the paper.

Funding

This work has been supported by Russian Foundation for Basic Research, Projects 17-03-00818 and 18-011-00869.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Shkatov.

Additional information

Presented by Yde Venema

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybakov, M., Shkatov, D. Undecidability of First-Order Modal and Intuitionistic Logics with Two Variables and One Monadic Predicate Letter. Stud Logica 107, 695–717 (2019). https://doi.org/10.1007/s11225-018-9815-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-018-9815-7

Keywords

Navigation