Epistemic Logic, Monotonicity, and the Halbach–Welch Rapprochement Strategy

Abstract

Predicate approaches to modality have been a topic of increased interest in recent intensional logic. Halbach and Welch (Mind 118(469):71–100, 2009) have proposed a new formal technique to reduce the necessity predicate to an operator, demonstrating that predicate and operator methods are ultimately compatible. This article concerns the question of whether Halbach and Welch’s approach can provide a uniform formal treatment for intensionality. I show that the monotonicity constraint in Halbach and Welch’s proof for necessity fails for almost all possible-worlds theories of knowledge. The nonmonotonicity results demonstrate that the most obvious way of emulating Halbach and Welch’s rapprochement of the predicate and operator fails in the epistemic setting.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bello, M. D., Epistemic closure, assumptions and topics of inquiry, Synthese 191(16): 3977–4002, 2014.

    Article  Google Scholar 

  2. 2.

    Belnap, N., and A. Gupta, The Revision Theory of Truth, MIT Press, Cambridge, 1993.

    Google Scholar 

  3. 3.

    Birkhoff, G., Lattice Theory, 3rd edn., American Mathematical Society, Providence, 1967.

    Google Scholar 

  4. 4.

    Chellas, B. F., Basic conditional logic, Journal of Philosophical Logic 4(2):133–153, 1975.

    Article  Google Scholar 

  5. 5.

    Cross, C., The paradox of the knower without epistemic closure, Mind 110(438):319–333, 2001.

    Article  Google Scholar 

  6. 6.

    Cross, C., The paradox of the knower without epistemic closure—corrected, Mind 121(482):457–466, 2012.

    Article  Google Scholar 

  7. 7.

    Dretske, F., Epistemic operators, The Journal of Philosophy 67(24):1007–1023, 1970.

    Article  Google Scholar 

  8. 8.

    Dretske, F., The pragmatic dimension of knowledge, Philosophical Studies 40(3):363–378, 1981.

    Article  Google Scholar 

  9. 9.

    Egre, P., The knower paradox in the light of provability interpretations of modal logic, Journal of Logic, Language and Information 14(1):13–48, 2005.

    Article  Google Scholar 

  10. 10.

    Halbach, V., Axiomatic Theories of Truth, Cambridge University Press, Oxford, 2011.

    Google Scholar 

  11. 11.

    Halbach, V., and P. Welch, Necessities and Necessary Truths: A Prolegomenon to the Use of Modal Logic in the Analysis of Intensional Notions, Mind 118(469):71–100, 2009.

    Article  Google Scholar 

  12. 12.

    Hawke, P., Relevant alternatives in epistemology and logic, in J. Redmond, O. Pombo Martins, and A. Nepomuceno Fernández, (eds.), Epistemology, Knowledge and the Impact of Interaction, Springer, 2016, pp. 207–235.

  13. 13.

    Heller, M., Relevant alternatives, Philosophical Studies 55(1):23–40, 1989.

    Article  Google Scholar 

  14. 14.

    Heller, M., Relevant alternatives and closure, Australasian Journal of Philosophy 77(2):196–208, 1999.

    Article  Google Scholar 

  15. 15.

    Holliday, W. H., Epistemic Closure and Epistemic Logic I: Relevant Alternatives and Subjunctivism, Journal of Philosophical Logic 44(1):1–62, 2015.

    Article  Google Scholar 

  16. 16.

    Horsten, L., The Tarskian Turn, The MIT Press, Cambridge, 2011.

    Google Scholar 

  17. 17.

    Kaplan, D, and R. Montague, A paradox regained, Notre Dame Journal of Formal Logic 1(3):79–90, 1960.

    Article  Google Scholar 

  18. 18.

    Kripke, S., Is there a problem about substitutional quantification?, in The Ways of Paradox and Other Essays, Oxford University Press, 1976, pp. 324–419.

  19. 19.

    Lewis, D., Elusive knowledge, Australasian Journal of Philosophy 74(4):549–567, 1996.

    Article  Google Scholar 

  20. 20.

    Maitzen, S., The knower paradox and epistemic closure, Synthese 114(2):337–354, 1998.

    Article  Google Scholar 

  21. 21.

    Montague, R., Syntactical treatments of modality, with corollaries on reflexion principles and finite axiomatizability, in R. H. Thomason, (ed.), Formal Philosophy: Selected Papers of Richard Montague, chap. 10, Yale University Press, 1963, pp. 286–302.

  22. 22.

    Montague, R., Formal Philosophy: Selected Papers of Richard Montague, Yale University Press, New Haven, 1974.

    Google Scholar 

  23. 23.

    Nozick, R., Philosophical Explanations, Harvard University Press, Cambridge, 1981.

    Google Scholar 

  24. 24.

    Priest, G., An Introduction to Non-Classical Logic, Cambridge, 2008.

  25. 25.

    Pritchard, D., Sensitivity, safety, and anti-luck epistemology, in J. Greco, (ed.), The Oxford Handbook of Skepticism, Oxford University Press, Oxford, 2008, pp. 437–455.

    Google Scholar 

  26. 26.

    Quine, W. V., Three grades of modal involvement, in The Ways of Paradox and Other Essays, Random House, 1966, pp. 156–174.

  27. 27.

    Schwarz, W., Variations on a montagovian theme, Synthese 190:3377–3395, 2013.

    Article  Google Scholar 

  28. 28.

    Steup, M., and E. Sosa, Contemporary Debates in Epistemology, Blackwell Publishers Inc., Malden, 2005.

    Google Scholar 

  29. 29.

    Tarski, A., A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of Mathematics 5(2): 285–309, 1955.

    Article  Google Scholar 

  30. 30.

    Uzquiano, G., The paradox of the knower without epistemic closure? Mind 113(449): 95–107, 2004.

    Article  Google Scholar 

  31. 31.

    Williamson, T., Knowledge and Its Limits, Oxford University Press, Oxford, 2002.

    Google Scholar 

  32. 32.

    Xu, Z., and B. Chen, Epistemic logic with evidence and relevant alternatives, in Jaakko Hintikka on Knowledge and Game-Theoretical Semantics, Springer, 2018, pp. 535–555.

Download references

Acknowledgements

I would like to thank Sean Walsh, David Woodruff Smith, Kai Wehmeier, and Brian Skyrms. Early versions of this work were presented at the following events: The Predicate Approaches to Modality Conference at the Munich Center for Mathematical Philosophy, LMU Munich, in September 2014; the C-ALPHA Logic Seminar, UC Irvine, in Winter 2016. I am grateful to the audiences for their responses. Thanks is owed in particular to the following people who gave me invaluable feedback and comments on these and other occasions: Tim Button, Volker Halbach, Greg Lauro, Richard Mendelsohn, Jeff Schaz, Johannes Stern, and Philip Welch.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kyle Banick.

Additional information

Presented by Richmond H. Thomason

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banick, K. Epistemic Logic, Monotonicity, and the Halbach–Welch Rapprochement Strategy. Stud Logica 107, 669–693 (2019). https://doi.org/10.1007/s11225-018-9811-y

Download citation

Keywords

  • Epistemic logic
  • Intensional logic
  • Modal logic