Advertisement

Back to Basics: Belief Revision Through Direct Selection

  • Sven Ove HanssonEmail author
Open Access
Article
  • 99 Downloads

Abstract

Traditionally, belief change is modelled as the construction of a belief set that satisfies a success condition. The success condition is usually that a specified sentence should be believed (revision) or not believed (contraction). Furthermore, most models of belief change employ a select-and-intersect strategy. This means that a selection is made among primary objects that satisfy the success condition, and the intersection of the selected objects is taken as outcome of the operation. However, the select-and-intersect method is difficult to justify, in particular since the primary objects (usually possible worlds or remainders) are not themselves plausible outcome candidates. Some of the most controversial features of belief change theory, such as recovery and the impossibility of Ramsey test conditionals, are closely connected with the select-and-intersect method. It is proposed that a selection mechanism should instead operate directly on the potential outcomes, and select only one of them. In this way many of the problems that are associated with the select-and-intersect method can be avoided. This model is simpler than previous models in the important Ockhamist sense of doing away with intermediate, cognitively inaccessible objects. However, the role of simplicity as a choice criterion in the direct selection among potential outcomes is left as an open issue.

Keywords

Belief change Select-and-intersect Recovery Expansion property Finiteness Ramsey test Direct selection Simplicity Choice function Selection function Support function General input assimilation Descriptor revision 

References

  1. 1.
    Alchourrón, C., P. Gärdenfors, and D. Makinson, On the logic of theory change: partial meet contraction and revision functions, Journal of Symbolic Logic 50:510–530, 1985.Google Scholar
  2. 2.
    Alchourrón, C., and D. Makinson, On the logic of theory change: contraction functions and their associated revision functions, Theoria 48:14–37, 1982.CrossRefGoogle Scholar
  3. 3.
    Alchourrón, C., and D. Makinson, On the logic of theory change: safe contraction, Studia Logica 44:405–422, 1985.CrossRefGoogle Scholar
  4. 4.
    Fermé, E., and S.O. Hansson, AGM 25 years. Twenty-five years of research in belief change, Journal of Philosophical Logic 40:295–331, 2011.CrossRefGoogle Scholar
  5. 5.
    Fuhrmann, A., Relevant Logics, Modal Logics, and Theory Change. Doctoral thesis, Australian National University, Canberra, 1988.Google Scholar
  6. 6.
    Fuhrmann, A., Theory contraction through base contraction, Journal of Philosophical Logic 20:175–203, 1991.CrossRefGoogle Scholar
  7. 7.
    Fuhrmann, A., and S.O. Hansson, A survey of multiple contraction, Journal of Logic, Language, and Information 3:39–76, 1994.CrossRefGoogle Scholar
  8. 8.
    Gallier, J.R., Autonomous belief revision and communication, in P. Gärdenfors, (ed.), Belief Revision. Cambridge University Press, Cambridge, 1992, pp. 220–246.CrossRefGoogle Scholar
  9. 9.
    Gärdenfors, P., Rules for rational changes of belief, in T. Pauli, (ed.), Philosophical Essays Dedicated to Lennart Åqvist on His Fiftieth Birthday. Philosophical studies, vol. 34. University of Uppsala, Department of Philosophy, Uppsala, 1982, pp. 88–101.Google Scholar
  10. 10.
    Gärdenfors, P., Belief revision and the Ramsey test for conditionals, Philosophical Review 95:81–93, 1986.CrossRefGoogle Scholar
  11. 11.
    Gärdenfors, P., Knowledge in Flux. Modeling the Dynamics of Epistemic States, The MIT Press, Cambridge, 1988.Google Scholar
  12. 12.
    Gärdenfors, P., and D. Makinson, Revisions of knowledge systems using epistemic entrenchment, in M.Y. Vardi, (ed.), Proceedings of the Second Conference on Theoretical Aspects of Reasoning about Knowledge, Morgan Kaufmann, Los Altos, pp. 83–95, 1988.Google Scholar
  13. 13.
    Glaister, S.M., Recovery recovered, Journal of Philosophical Logic 29:171–206, 2000.CrossRefGoogle Scholar
  14. 14.
    Grove, A., Two modellings for theory change, Journal of Philosophical Logic 17:157–170, 1988.CrossRefGoogle Scholar
  15. 15.
    Hansson, S.O., Belief contraction without recovery, Studia Logica 50:251–260, 1991.CrossRefGoogle Scholar
  16. 16.
    Hansson, S.O., In defense of the Ramsey test, Journal of Philosophy 89:522–540, 1992.CrossRefGoogle Scholar
  17. 17.
    Hansson, S.O., Theory contraction and base contraction unified, Journal of Symbolic Logic 58:602–625, 1993.CrossRefGoogle Scholar
  18. 18.
    Hansson, S.O., Taking belief bases seriously, in D. Prawitz and D. Westerståhl, (eds.), Logic and Philosophy of Science in Uppsala, Kluwer, Dordrecht, 1994, pp. 13–28.CrossRefGoogle Scholar
  19. 19.
    Hansson, S.O., A Textbook of Belief Dynamics. Theory Change and Database Updating, Kluwer, Dordrecht, 1999.CrossRefGoogle Scholar
  20. 20.
    Hansson, S.O., Recovery and epistemic residues, Journal of Logic, Language and Information 8:421–428, 1999.CrossRefGoogle Scholar
  21. 21.
    Hansson, S.O., Three approaches to finitude in belief change, in T. Rønnow-Rasmussen, B. Petersson, J. Josefsson and D. Egonsson, (eds.), Hommage à Wlodek. Philosophical Papers Dedicated to Wlodek Rabinowicz, Lund University, Lund, 2007.Google Scholar
  22. 22.
    Hansson, S.O., Specified meet contraction, Erkenntnis 69:31–54, 2008.CrossRefGoogle Scholar
  23. 23.
    Hansson, S.O., Replacement: a Sheffer stroke for belief revision, Journal of Philosophical Logic 38:127–149, 2009.CrossRefGoogle Scholar
  24. 24.
    Hansson, S.O., Contraction, revision, expansion: representing belief change operations, in R. Trypuz, (ed.), Krister Segerberg on Logic of Actions, Springer, Berlin, 2013, pp. 135–152 .Google Scholar
  25. 25.
    Hansson, S.O., Outcome level analysis of belief contraction, Review of Symbolic Logic 6:183–204, 2013.CrossRefGoogle Scholar
  26. 26.
    Hansson, S.O., Maximal and perimaximal contraction, Synthese 190:3325–3348, 2013.CrossRefGoogle Scholar
  27. 27.
    Hansson, S.O., Descriptor revision, Studia Logica 102:955–980, 2014.CrossRefGoogle Scholar
  28. 28.
    Hansson, S.O., Relations of epistemic proximity for belief change, Artificial Intelligence 217:76–91, 2014.CrossRefGoogle Scholar
  29. 29.
    Hansson, S.O., A monoselective presentation of AGM revision, Studia Logica 103:1019–1033, 2015.CrossRefGoogle Scholar
  30. 30.
    Hansson, S.O., Iterated descriptor revision and the logic of Ramsey test conditionals, Journal of Philosophical Logic 45:429–450, 2016.CrossRefGoogle Scholar
  31. 31.
    Hansson, S.O., AGM contraction is not reconstructible as a descriptor operation, Journal of Logic and Computation 27(4):1133–1141, 2017.Google Scholar
  32. 32.
    Hansson, S.O., Belief change, in S.O. Hansson and V.F. Hendricks, (eds.), Introduction to Formal Philosophy. Springer, Berlin, 2018.Google Scholar
  33. 33.
    Levi, I., Subjunctives, dispositions and chances, Synthese 34:423–455, 1977.CrossRefGoogle Scholar
  34. 34.
    Levi, I., The Fixation of Belief and Its Undoing, Cambridge University Press, Cambridge, 1991.CrossRefGoogle Scholar
  35. 35.
    Lindström, S., and W. Rabinowicz, Epistemic entrenchment with incomparabilities and relational belief revision, in A. Fuhrmann, and M. Morreau, (eds.), The Logic of Theory Change. Springer, New York, 1991, pp. 93–126.CrossRefGoogle Scholar
  36. 36.
    Makinson, D., On the status of the postulate of recovery in the logic of theory change, Journal of Philosophical Logic 16:383–394, 1987.CrossRefGoogle Scholar
  37. 37.
    Makinson, D., On the force of some apparent counterexamples to recovery, in E. Garzón Valdéz et al., (eds.), Normative Systems in Legal and Moral Theory: Festschrift for Carlos Alchourrón and Eugenio Bulygin, Duncker & Humblot, Berlin, 1997, pp. 475–481.Google Scholar
  38. 38.
    Rott, H., Conditionals and theory change: revisions, expansions, and additions, Synthese 81:91–113, 1989.CrossRefGoogle Scholar
  39. 39.
    Rott, H., Change, Choice and Inference: A Study of Belief Revision and Nonmonotonic Reasoning, Oxford University Press, Oxford, 2001.Google Scholar
  40. 40.
    Rott, H., Basic entrenchment, Studia Logica 73:257–280, 2003.Google Scholar
  41. 41.
    Rott, H., Three floors for the theory of theory change, in V. Punčochář and M. Dančák, (eds.), Logica Yearbook 2013, College Publications, London, 2014.Google Scholar
  42. 42.
    Rott, H., and S.O. Hansson, Safe contraction revisited, in S.O. Hansson, (ed.), David Makinson on Classical Methods for Non-Classical Problems, Springer, Dordrecht, 2014, pp. 35–70.CrossRefGoogle Scholar
  43. 43.
    Sandqvist, T., On why the best should always meet, Economics and Philosophy 16:287–313, 2000.CrossRefGoogle Scholar
  44. 44.
    Zhang L., and S.O., Hansson, How to make up one’s mind, Logic Journal of the IGPL 23:705–717, 2015.Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Royal Institute of Technology (KTH)StockholmSweden

Personalised recommendations