A Categorical Equivalence for Stonean Residuated Lattices

  • Manuela Busaniche
  • Roberto Cignoli
  • Miguel Andrés Marcos
Article
  • 3 Downloads

Abstract

We follow the ideas given by Chen and Grätzer to represent Stone algebras and adapt them for the case of Stonean residuated lattices. Given a Stonean residuated lattice, we consider the triple formed by its Boolean skeleton, its algebra of dense elements and a connecting map. We define a category whose objects are these triples and suitably defined morphisms, and prove that we have a categorical equivalence between this category and that of Stonean residuated lattices. We compare our results with other works and show some applications of the equivalence.

Keywords

Stonean residuated lattices Boolean algebras Triples 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguzzoli, S., T. Flaminio, and S. Ugolini, Equivalences between the subcategories of MTL-algebras via Boolean algebras and prelinear semihoops, Journal of Logic and Computation, 2017.  https://doi.org/10.1093/logcom/exx014.
  2. 2.
    Bredon, G.E., Sheaf Theory, Second Edition, Graduate Texts in Mathematics, vol. 170, Springer-Verlag, New York, Heidelberg, Berlin, 1997.Google Scholar
  3. 3.
    Burris, S., and H.P. Sankappanavar, A Course in Universal Algebra Graduate Texts in Mathematics, vol. 78. Springer-Verlag, New York, Heidelberg, Berlin, 1981.Google Scholar
  4. 4.
    Chen, C.C., and G. Grätzer, Stone Lattices. I: Construction Theorems, Canadian Journal of Mathematics 21:884–994, 1969.CrossRefGoogle Scholar
  5. 5.
    Cignoli, R., Free algebras in varieties of Stonean residuated lattices, Soft Computing 12:315–320, 2008.CrossRefGoogle Scholar
  6. 6.
    Cignoli, R., and F. Esteva, Commutative integral bounded residuated lattices with an added involution, Annals of Pure and Applied Logic 161:150–160, 2009.CrossRefGoogle Scholar
  7. 7.
    Cignoli, R., and A. Torrens, An algebraic analysis of product logic, Multiple-Valued Logic 5:45–65, 2000.Google Scholar
  8. 8.
    Cignoli, R., and A. Torrens, Free algebras in varieties of BL-algebras with a Boolean retract, Algebra Universalis 48:55–79, 2002.CrossRefGoogle Scholar
  9. 9.
    Cignoli, R., and A. Torrens, Free Algebras in varieties of Glivenko MTL-algebras satisfying the equation \(2(x^2) = (2x)^2\), Studia Logica 83:157–181, 2006.CrossRefGoogle Scholar
  10. 10.
    Cignoli, R., and A. Torrens, Erratum to: free algebras in varieties of Glivenko MTL-algebras satisfying the equation \(2(x^2) = (2x)^2\). Studia Logica 105:227–228, 2017.CrossRefGoogle Scholar
  11. 11.
    Cignoli, R., and A., Torrens, Varieties of commutative integral bounded residuated lattices admitting a Boolean retraction term, Studia Logica 100:1107–1136, 2012.CrossRefGoogle Scholar
  12. 12.
    Davey, B.A., Sheaf Spaces and Sheaves of Universal Algebras, Math. Z. 134:275–290, 1973.CrossRefGoogle Scholar
  13. 13.
    Esteva, F., and L. Godo, Monoidal t-norm based logic: towards a logic for left continuous t-norms, Fuzzy Sets and Systems 124:271–288, 2001.CrossRefGoogle Scholar
  14. 14.
    Galatos, N., P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Elsevier, New York, 2007.Google Scholar
  15. 15.
    Grätzer, G., Universal Algebra, Van Nostrand, Princeton, 1968.Google Scholar
  16. 16.
    Grätzer, G., General Lattice Theory, Academic Press, New York San Francisco, 1973.Google Scholar
  17. 17.
    Jacobson, N., Basic algebra. II, Second Edition, W. H. Freeman and Company, New York, 1989.Google Scholar
  18. 18.
    Katriňák, T., A new proof of the construction theorem for Stone algebras, Proceedings of the American Mathematical Society 40:75–78, 1973.Google Scholar
  19. 19.
    Katriňák, T., and P. Mederly, Constructions of p-algebras, Algebra Univers. 17: 288–316, 1983.CrossRefGoogle Scholar
  20. 20.
    Knoebel, A., Sheaves of Algebras over Boolean Spaces, Birkhäuser, Basel, 2012.CrossRefGoogle Scholar
  21. 21.
    Kowalski, T., and H. Ono, Residuated lattices: An algebraic glimpse at logics without contraction. Preliminary report.Google Scholar
  22. 22.
    Mac Lane, S., Categories for the Working Mathematician. 2nd edition, Graduate Texts in Mathematics, Volume 5, Springer, Berlin, 1998.Google Scholar
  23. 23.
    Maddana Swamy, U., and V.V. Rama Rao, Triple and sheaf representations of Stone lattices, Algebra Universalis 5:104–113, 1975.CrossRefGoogle Scholar
  24. 24.
    Maeda, F., and S. Maeda, Theory of Symmetric Lattices, Springer-Verlag, Berlin, Heidelberg, New York, 1970.CrossRefGoogle Scholar
  25. 25.
    McKenzie, R., G.F. McNulty, and W.E. Taylor, Algebras, Lattices, Varieties. Volume I, Wadsworth and Brooks/Cole, Monterey, 1987.Google Scholar
  26. 26.
    Montagna, F., and S. Ugolini, A categorical equivalence for product algebras, Studia Logica 103:345–373, 2015.CrossRefGoogle Scholar
  27. 27.
    Schmidt, J., Quasi-decompositions, exact sequences, and triple sums of semigroups I–II, vol. 17 of Colloquia Mathematica Societatis, János Bolyai, Constributions to Universal Algebra, Szeged, 1975.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQPredio Dr. Alberto Cassano del CCT-CONICET-Santa FeSanta FeArgentina
  2. 2.Departamento de Matemática, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations