Skip to main content
Log in

Logicality, Double-Line Rules, and Modalities

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

This paper deals with the question of the logicality of modal logics from a proof-theoretic perspective. It is argued that if Dos̆en’s analysis of logical constants as punctuation marks is embraced, it is possible to show that all the modalities in the cube of normal modal logics are indeed logical constants. It will be proved that the display calculus for each displayable modality admits a purely structural presentation based on double-line rules which, following Dos̆en’s analysis, allows us to claim that the corresponding modal operators are logical constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron, A., Simple consequence relations, Inf. Comput. 92(1):105–139, 1991.

    Article  Google Scholar 

  2. Belnap, N.D., Display logic, Journal of Philosophical Logic 11(4):375–417, 1982.

    Article  Google Scholar 

  3. Belnap, N.D., The display problem, in H. Wansing, (ed.), Proof Theory of Modal Logic, Springer Netherlands, Dordrecht, 1996, pp. 79–92.

    Chapter  Google Scholar 

  4. Binder, D., and T. Piecha, Popper’s notion of duality and his theory of negations, History and Philosophy of Logic 38(2):154–189, 2017.

    Article  Google Scholar 

  5. Bonnay, D., and B. Simmenauer, Tonk strikes back, Australasian Journal of Logic 3:33–44, 2005.

    Article  Google Scholar 

  6. Ciabattoni, A., and R. Ramanayake, Power and limits of structural display rules, ACM Trans. Comput. Logic 17(3):17:1–17:39, 2016.

    Article  Google Scholar 

  7. Dalla Chiara, M. L., and R. Giuntini, Quantum logics, in D.M. Gabbay, and F. Guenthner, (eds.), Philosophical Logic, vol. VI, Springer, Netherlands, Dordrecht, 2002, pp. 129–228.

  8. Dicher, B., Weak disharmony: Some lessons for proof-theoretic semantics, Review of Symbolic Logic 9(3):583–602, 2016.

    Article  Google Scholar 

  9. Dos̆en, K., Sequent-systems for modal logic, Journal of Symbolic Logic 50(1):149–168, 1985.

    Article  Google Scholar 

  10. Dos̆en, K., Logical constants as punctuation marks, Notre Dame Journal of Formal Logic 30:362–381, 1989.

    Article  Google Scholar 

  11. Garson, J., Modal logic, in E.N. Zalta, (ed.), The Stanford Encyclopedia of Philosophy, spring 2016 edn., Metaphysics Research Lab, Stanford University, 2016.

  12. Goré, R., Gaggles, Gentzen and Galois: How to display your favourite substructural logic, Logic Journal of the IGPL 6(5):669–694, 1998.

    Article  Google Scholar 

  13. Gratzl, N., and E. Orlandelli, Double-line harmony in sequent calculi, in P. Arazim, and T. Lavicka, (eds.), The Logica Yearbook 2016, College Publications, 2017, pp. 157–171.

  14. Hacking, I., What is logic?, The Journal of Philosophy 76:285–319, 1979.

    Article  Google Scholar 

  15. Kürbis, N., Proof-theoretic semantics, a problem with negation and prospects for modalities, Journal of Philosophical Logic 44:713–727, 2015.

    Article  Google Scholar 

  16. Kracht, M., Power and weakness of the modal display calculus, in H. Wansing, (ed.), Proof Theory of Modal Logic, Kluwer, 1996, pp. 93–121.

  17. MacFarlane, J., Logical constants, in E.N. Zalta, (ed.), The Stanford Encyclopedia of Philosophy, fall 2015 edn., Metaphysics Research Lab, Stanford University, 2015.

  18. Martin-Löf, P., Hauptsatz for the intuitionistic theory of iterated inductive definitions, in J.E. Fenstad, (ed.), Proceedings of the Second Scandinavian Logic Symposium, vol. 63, Elsevier, 1971, pp. 179–216.

  19. Naibo, A., and M. Petrolo, Are uniqueness and deducibility of identicals the same?, Theoria 81:143–181, 2015.

    Article  Google Scholar 

  20. Negri, S., Proof analysis in modal logics, Journal of Philosophical Logic 33:507–544, 2005.

    Article  Google Scholar 

  21. Negri, S., and J. von Plato, Structural Proof Theory, Cambridge University Press, 2001.

  22. Poggiolesi, F., Display calculi and other modal calculi: A comparison, Synthese 173(3):259–279, 2010.

    Article  Google Scholar 

  23. Popper, K.R., Functional logic without axioms or primitive rules of inference, Koninklijke Nederlandsche Akademie van Wetenschappen, Proceedings of the Section of Sciences 50:1214–1224, 1947.

    Google Scholar 

  24. Popper, K.R., Logic without assumptions, Proceedings of the Aristotelian Society 47:251–292, 1947.

    Article  Google Scholar 

  25. Popper, K.R., New foundations for logic, Mind 56:193–235, 1947.

    Article  Google Scholar 

  26. Prawitz, D., Natural Deduction: A Proof-Theoretical Study, Almqvist & Wiskell, 1965.

  27. Read, S., Harmony and modality, in C. Dégremont, (ed.), Dialogues, Logics and Other Strange Things: Essays in Honour of Shahid Rahman, College Publications, 2008, pp. 285–303.

  28. Sambin, G., G. Battilotti, and C. Faggian, Basic logic, Journal of Symbolic Logic 65:979–1013, 2000.

    Article  Google Scholar 

  29. Schroeder-Heister, P., Popper’s theory of deductive inference and the concept of a logical constant, History and Philosophy of Logic 5:79–110, 1984.

    Article  Google Scholar 

  30. Schroeder-Heister, P., Proof-theoretic semantics, self-contradiction, and the format of deductive reasoning, Topoi 31(1):77–85, 2012.

    Article  Google Scholar 

  31. Wansing, H., Sequent calculi for normal modal propositional logics, Journal of Logic and Computation 4(2):125–142, 1994.

    Article  Google Scholar 

  32. Wansing, H., Displaying Modal Logic, Kluwer, 1998.

  33. Wolenski, J., First-order logic: (Philosophical) pro and contra, in V.F. Hendricks, (ed.), First-Order Logic Revisited, Logos, 2004, pp. 369–398.

Download references

Acknowledgements

Thanks are due to two anonymous referees and to the audience at the 7th Conference on Non-Classical Logic in Toruń and at the conference General Proof Theory in Tübingen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Orlandelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gratzl, N., Orlandelli, E. Logicality, Double-Line Rules, and Modalities. Stud Logica 107, 85–107 (2019). https://doi.org/10.1007/s11225-017-9778-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-017-9778-0

Keywords

Navigation