Abstract
This is a companion to a paper by the authors entitled “Gödel on deduction”, which examined the links between some philosophical views ascribed to Gödel and general proof theory. When writing that other paper, the authors were not acquainted with a system of natural deduction that Gödel presented with the help of Gentzen’s sequents, which amounts to Jaśkowski’s natural deduction system of 1934, and which may be found in Gödel’s unpublished notes for the elementary logic course he gave in 1939 at the University of Notre Dame. Here one finds a presentation of this system of Gödel accompanied by a brief reexamination in the light of the notes of some points concerning his interest in sequents made in the preceding paper. This is preceded by a brief summary of Gödel’s Notre Dame course, and is followed by comments concerning Gödel’s natural deduction system.
Similar content being viewed by others
References
Adžić, M., and K. Došen, Gödel’s Notre Dame course, The Bulletin of Symbolic Logic 22:469–481, 2016 (preprint available at: http://www.mi.sanu.ac.rs/~kosta/ADgoedndcourse.pdf; http://arXiv.org).
Carroll, L., What the Tortoise said to Achilles, Mind 4:278–280, 1895.
Cassou-Noguès, P., Gödel’s introduction to logic in 1939, History and Philosophy of Logic 30:69–90, 2009.
Church, A., Introduction to Mathematical Logic, Princeton University Press, Princeton, 1956.
Dawson, Jr., J. W., Logical Dilemmas: The Life and Work of Kurt Gödel, Peters, Wellesley, 1997.
Dawson, Jr., J. W., Kurt Gödel at Notre Dame, Logic at Notre Dame, 4–10 (available at: https://math.nd.edu/assets/13975/logicatndweb.pdf).
Dawson, Jr., J. W., and C. A. Dawson, Future tasks for Gödel scholars, The Bulletin of Symbolic Logic 11:150–171, 2005.
Došen, K., Cut Elimination in Categories, Kluwer (Springer), Dordrecht, 1999 (Addenda and corrigenda: http://www.mi.sanu.ac.rs/~kosta/AddCorrCutElimCat.pdf).
Došen, K., A prologue to the theory of deduction, in M. Peliš and V. Punčochář (eds.), The Logica Yearbook 2010, College Publications, London, 2011, pp. 65–80 (preprint available at: http://www.mi.sanu.ac.rs/~kosta/prol.pdf).
Došen, K., Inferential semantics, in H. Wansing (ed.), Dag Prawitz on Proofs and Meaning, Springer, Cham, 2015, pp. 147–162 (preprint, better version, available at: http://www.mi.sanu.ac.rs/~kosta/infsem.pdf).
Došen, K., On the paths of categories: An introduction to deduction, in T. Piecha and P. Schroeder-Heister (eds.), Advances in Proof-Theoretic Semantics, Springer, Cham, 2016, pp. 65–74 (preprint available at: http://www.mi.sanu.ac.rs/~kosta/Dosen%20On%20the%20Paths.pdf).
Došen, K., On sets of premises, in D. Probst and P. Schuster (eds.), Concepts of Proof in Mathematics, Philosophy and Computer Science, Walter de Gruyter, Berlin, 2016, pp. 151–162 (available at: http://arXiv.org).
Došen, K., and M. Adžić, Gödel on deduction, preprint (available at: http://www.mi.sanu.ac.rs/~kosta/DAgoedded.pdf; http://arXiv.org).
Došen, K., and Z. Petrić, Proof-Theoretical Coherence, KCL Publications (College Publications), London, 2004 (revised version of 2007 available at: http://www.mi.sanu.ac.rs/~kosta/coh.pdf).
Frege, G., Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Verlag von Louis Nebert, Halle, 1879 (English translation: Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought, in J. van Heijenoort (ed.), From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge, Mass., 1967, pp. 1–82).
Gentzen, G., Untersuchungen über das logische Schließen, Mathematische Zeitschrift, vol. 39, 1935, pp. 176–210, 405–431 (English translation: Investigations into logical deduction, in [18], pp. 68–131, 312–317).
Gentzen, G., Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische Annalen, vol. 112, pp. 493–565, 1936 (English translation: The consistency of elementary number theory, in [18], pp. 132–213).
Gentzen, G., The Collected Papers of Gerhard Gentzen (M. E. Szabo, editor and translator), North-Holland, Amsterdam, 1969.
Gödel, K., Zur intuitionistischen Arithmetik und Zahlentheorie, Ergebnisse eines mathematischen Kolloquiums, vol. 4 (1933), pp. 34–38 (reprinted with an English translation: On intuitionistic arithmetic and number theory, in S. Feferman et al., (eds.), Collected Works, Volume I, Publications 1929–1936, Oxford University Press, New York, 1986, pp. 286–295).
Gödel, K., Max Phil X (G. Crocco et al., (eds.)), Presses Universitaires de Provence, Aix-en-Provence, to appear (preprint avaliable at https://hal.archives-ouvertes.fr/hal-01459188).
Hilbert, D., and W. Ackermann, Grundzüge der theoretischen Logik, Springer, Berlin, 1928 (English translation: Principles of Theoretical Logic, Chelsea, New York, 1950).
Indrzejczak, A., Natural Deduction, Hybrid Systems and Modal Logics, Springer, Dordrecht, 2010.
Indrzejczak, A., A survey of nonstandard sequent calculi, Studia Logica 102:1295–1322, 2014.
Jaśkowski, S., On the rules of suppositions in formal logic, Studia Logica 1:5–32, 1934 (reprinted in: S. McCall (ed.), Polish Logic 1920–1939, Oxford University Press, Oxford, 1967, pp. 232–258).
Kalmár, L., Über die Axiomatisierbarkeit des Aussagenkalküls, Acta litterarum ac scientiarum Regiae Universitatis Hungaricae Francisco-Josephinae, sectio scientiarum mathematicarum 7:222–243, 1935.
Łukasiewicz, J., and A. Tarski, Untersuchungen über den Aussagenkalkül, Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, vol. 23, 1930, pp. 30–50 (English translation: Investigations into the sentential calculus, in: A. Tarski, Logic, Semantics, Metamathematics: Papers from 1922 to 1938, J. H. Woodger, (ed.), Oxford University Press, Oxford, 1956; second edition, J. Corcoran, (ed.), Hackett, Indianapolis, 1983, pp. 39–59).
Mendelson, E., Introduction to Mathematical Logic, Van Nostrand, New York, 1964 (second edition, 1979).
Pelletier, F. J., and A. P. Hazen, A history of natural deduction, in D. M. Gabbay et al. (eds.), Handbook of the History of Logic, Volume 11—Logic: A History of its Central Concepts, North-Holland, Amsterdam, 2012, pp. 341–414.
Prawitz, D., Natural Deduction: A Proof-Theoretical Study, Almqvist & Wiksell, Stockholm, 1965.
Whitehead, A. N., and B. Russell, Principia Mathematica, Volume I, Cambridge University Press, Cambridge, 1910.
Author information
Authors and Affiliations
Corresponding author
Additional information
Presented by Andrzej Indrzejczak
Rights and permissions
About this article
Cite this article
Došen, K., Adžić, M. Gödel’s Natural Deduction. Stud Logica 106, 397–415 (2018). https://doi.org/10.1007/s11225-017-9744-x
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11225-017-9744-x