Studia Logica

, Volume 106, Issue 2, pp 237–279 | Cite as

On Argumentation Logic and Propositional Logic

  • Antonis C. Kakas
  • Paolo Mancarella
  • Francesca Toni
Open Access


This paper studies the relationship between Argumentation Logic (AL), a recently defined logic based on the study of argumentation in AI, and classical Propositional Logic (PL). In particular, it shows that AL and PL are logically equivalent in that they have the same entailment relation from any given classically consistent theory. This equivalence follows from a correspondence between the non-acceptability of (arguments for) sentences in AL and Natural Deduction (ND) proofs of the complement of these sentences. The proof of this equivalence uses a restricted form of ND proofs, where hypotheses in the application of the Reductio of Absurdum inference rule are required to be “relevant” to the absurdity derived in the rule. The paper also discusses how the argumentative re-interpretation of PL could help control the application of ex-falso quodlibet in the presence of inconsistencies.


Argumentation Propositional logic Natural deduction Reductio ad Absurdum 


  1. 1.
    Amgoud, L., Postulates for logic-based argumentation systems, International Journal of Approximate Reasoning 55(9): 2028–2048, 2014.Google Scholar
  2. 2.
    Besnard, P., and A. Hunter, Elements of Argumentation, MIT Press, Cambridge, 2008.CrossRefGoogle Scholar
  3. 3.
    Da Costa, N. C. A., Sistemas Formais Inconsistentes, Universidade Federal do Parana, Parana, 1963. Thesis.Google Scholar
  4. 4.
    D’Agostino, M., and S. Modgil, A rational account of classical logic argumentation for real-world agents in G. A. Kaminka, M. Fox, P. Bouquet, E. Hüllermeier, V. Dignum, F. Dignum and F. van Harmelen (eds.), ECAI 2016: 22nd European Conference on Artificial Intelligence, vol. 285 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2016, pp. 141–149.Google Scholar
  5. 5.
    De Castro, M. A., and I. M. L. D’Ottaviano, Natural deduction for paraconsistent logic, Logica Trianguli 4: 3–24, 2000.Google Scholar
  6. 6.
    Dimopoulos, Y., B. Nebel, and F. Toni, On the computational complexity of assumption-based argumentation for default reasoning, Artificial Intelligence 141 (1/2): 57–78, 2002.CrossRefGoogle Scholar
  7. 7.
    D’Ottaviano, I. M. L., On the development of paraconsistent logic and Da Costa’s work, The Journal of Non-Classical Logic 7: 89–152, 1990.Google Scholar
  8. 8.
    Dung, P. M., On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, Artificial Intelligence 77(2): 321–358, 1995.CrossRefGoogle Scholar
  9. 9.
    Dung, P. M., A. C. Kakas, and P. Mancarella, Negation as failure revisited, in Technical Report, University of Pisa, 1992.Google Scholar
  10. 10.
    Dunne, P. E., The computational complexity of ideal semantics, Artificial Intelligence 173(18): 1559–1591, 2009.CrossRefGoogle Scholar
  11. 11.
    Gentzen, G., Untersuchungen über das Logische Schliessen, Mathematische Zeitschrift 39(1): 176–210, 1935.CrossRefGoogle Scholar
  12. 12.
    Jaśkowski, S., On the rules of suppositions in formal logic, Studia Logica 1: 232–258, 1934.Google Scholar
  13. 13.
    Kakas, A., and L. Michael, Cognitive systems: argument and cognition, IEEE Intelligent Informatics Bulletin 17(1): 4–20, 2016.Google Scholar
  14. 14.
    Kakas, A. C., P. Mancarella, and P. M. Dung, The acceptability semantics for logic programs, in ICLP, 1994, pp. 504–519.Google Scholar
  15. 15.
    Kakas, A. C., and F. Toni, Computing argumentation in logic programming, Journal of Logic and Computation 9: 515–562, 1999.CrossRefGoogle Scholar
  16. 16.
    Kakas, A., and P. Mancarella, On the semantics of abstract argumentation, Journal of Logic and Computation 23: 991–1015, 2013.CrossRefGoogle Scholar
  17. 17.
    Kakas, A., L. Michael, and F. Toni, Argumentation: reconciling human and automated reasoning, in Second Workshop on Bridging the Gap Between Human and Automated Reasoning, IJCAI-16, 2016.Google Scholar
  18. 18.
    Kakas, A. C., and P. Mancarella, On the semantics of abstract argumentation, Journal of Logic and Computation 23(5): 991–1015, 2013.CrossRefGoogle Scholar
  19. 19.
    Kakas, A. C., F. Toni, and P. Mancarella, Argumentation logic, in S. Parsons, N. Oren, C. Reed and F. Cerutti (eds.), Computational Models of Argument: Proceedings of COMMA 2014, vol. 266 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2014, pp. 345–356.Google Scholar
  20. 20.
    Prawitz, D., Natural Deduction: A Proof Theoretical Study, Almqvist and Wiksell, Stockholm, 1965.Google Scholar
  21. 21.
    Priest, G., Minimally inconsistent LP, Studia Logica 50: 321–331, 1991.CrossRefGoogle Scholar
  22. 22.
    Priest, G., R. Routley, and J. Norman, Paraconsistent Logic: Essays on the Inconsistent, Philosophia Verlag, 1989.Google Scholar
  23. 23.
    Rahwan, I., and G. R. Simari, Argumentation in Artificial Intelligence, Springer, New York, 2009.Google Scholar
  24. 24.
    Tennant, N., A proof-theoretic approach to entailment, Philosophical Logic 9(2): 185–209, 1980.Google Scholar
  25. 25.
    Tennant, N., Perfect validity, entailment and paraconsistency, Studia Logica 43: 179–198, 1984.CrossRefGoogle Scholar
  26. 26.
    Tennant, N., Natural deduction and sequent calculus for intuitionistic relevant logic, Symbolic Logic 52(3): 665–680, 1987.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Cyprus UniversityNicosiaCyprus
  2. 2.University of PisaPisaItaly
  3. 3.Imperial College LondonLondonUK

Personalised recommendations