Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic. Cambridge University Press, 2001.
Dawar, A., and M. Otto, Modal characterisation theorems over special classes of frames. Annals of Pure and Applied Logic 161:1–42, 2009.
Fernández-Duque, D., A sound and complete axiomatization for dynamic topological logic. The Journal of Symbolic Logic 77:947–969, 2012.
Fernández-Duque, D., On the modal definability of simulability by finite transitive models. Studia Logica 98(3):347–373, 2011.
Article
Google Scholar
Fernández-Duque, D., Tangled modal logic for spatial reasoning, in T. Walsh, (ed.), Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI), pp. 857–862. AAAI Press/IJCAI, 2011.
Fernández-Duque, D., Tangled modal logic for topological dynamics. Annals of Pure and Applied Logic 163:467–481, 2012.
Article
Google Scholar
Goldblatt, R., Logics of Time and Computation. CSLI Lecture Notes No. 7. CSLI Publications, Stanford University, second edition, 1992.
Goldblatt, R., and I. Hodkinson, Spatial logic of tangled closure operators and modal mu-calculus. Annals of Pure and Applied Logic 168:1032–1090, 2017. doi:10.1016/j.apal.2016.11.006.
Goldblatt, R., and I. Hodkinson, The tangled derivative logic of the real line and zero-dimensional spaces, in L. Beklemishev, S. Demri, and A. Máté, (eds.), Advances in Modal Logic, Volume 11, pp. 342–361. College Publications, 2016. http://www.aiml.net/volumes/volume11/.
Janin D., and I. Walukiewicz, On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic, in U. Montanari and V. Sassone, (eds.), CONCUR ’96: Concurrency Theory, volume 1119 of Lecture Notes in Computer Science, Springer, 1996, pp. 263–277.
Kudinov, A., and V. Shehtman, Derivational modal logics with the difference modality, in G. Bezhanishvili, (ed.), Leo Esakia on Duality in Modal and Intuitionistic Logics, volume 4 of Outstanding Contributions to Logic, Springer, 2014, pp. 291–334.
Lucero-Bryan, J. G., The d-logic of the real line. Journal of Logic and Computation 23(1):121–156, 2013. doi:10.1093/logcom/exr054.
Article
Google Scholar
Rosen, E., Modal logic over finite structures. Journal of Logic and Computation 6:427–439, 1997.
Google Scholar
Segerberg, K., Decidability of S4.1. Theoria 34:7–20, 1968.
Article
Google Scholar
Shehtman, V., Derived sets in Euclidean spaces and modal logic. Technical Report X-1990-05, University of Amsterdam, 1990. http://www.illc.uva.nl/Research/Publications/Reports/X-1990-05.text.pdf.
Shehtman, V., «Everywhere» and «Here». Journal of Applied Non-Classical Logics 9(2–3):369–379, 1999.
Shehtman, V., Modal logic of Topological Spaces. Habilitation thesis, Moscow, 2000. In Russian.
Tarski, A., A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5:285–309, 1955.
Article
Google Scholar
van Benthem, J. F. A. K., Modal Correspondence Theory. PhD thesis, University of Amsterdam, 1976.
van Benthem, J. F. A. K., Modal Logic and Classical Logic. Bibliopolis, Naples, 1983.
Google Scholar
Zakharyaschev, M., A sufficient condition for the finite model property of modal logics above K4. Bulletin of the IGPL 1:13–21, 1993.
Article
Google Scholar