Studia Logica

, Volume 106, Issue 1, pp 101–130 | Cite as

Provably True Sentences Across Axiomatizations of Kripke’s Theory of Truth



We study the relationships between two clusters of axiomatizations of Kripke’s fixed-point models for languages containing a self-applicable truth predicate. The first cluster is represented by what we will call ‘\(\fancyscript{PKF}\)-like’ theories, originating in recent work by Halbach and Horsten, whose axioms and rules (in Basic De Morgan Logic) are all valid in fixed-point models; the second by ‘\(\fancyscript{KF}\)-like’ theories first introduced by Solomon Feferman, that lose this property but reflect the classicality of the metatheory in which Kripke’s construction is carried out. We show that to any natural system in one cluster—corresponding to natural variations on induction schemata—there is a corresponding system in the other proving the same sentences true, addressing a problem left open by Halbach and Horsten and accomplishing a suitably modified version of the project sketched by Reinhardt aiming at an instrumental reading of classical theories of self-applicable truth.


Formal theories of truth Proof-theory Semantic paradoxes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the European Commission (Grant No. 658285 FOREMOTIONS). I thank Martin Fischer, Leon Horsten, Johannes Stern, and the anonymous referees for their comments.


  1. 1.
    Belnap, N., A useful four-valued logic, in J. M. Dunn and G. Epstein, (eds.), Modern Uses of Multiple-Valued Logic, D. Reidel, Dordrecht, 1977.Google Scholar
  2. 2.
    Blamey, S., Partial logic, in D. M. Gabbay and F. Guenther (eds.), Handbook of Philosophical Logic, 2 ed., vol. 5, Kluwer, Dordrecht, 2002, pp. 261–353.CrossRefGoogle Scholar
  3. 3.
    Cantini, A., Notes on formal theories of truth, Zeitschrift für Logik un Grundlagen der Mathematik 35:97–130, 1989.CrossRefGoogle Scholar
  4. 4.
    Feferman, S., Systems of predicative analysis, Journal of Symbolic Logic 29:1–30, 1964.CrossRefGoogle Scholar
  5. 5.
    Feferman, S., Towards useful type-free theories. I, Journal of Symbolic Logic 49(1):75–111, 1984.CrossRefGoogle Scholar
  6. 6.
    Feferman, S., Reflecting on incompleteness, Journal of Symbolic Logic 56:1–49, 1991.CrossRefGoogle Scholar
  7. 7.
    Field, H., Saving Truth from Paradox, Oxford University Press, Oxford, 2008.CrossRefGoogle Scholar
  8. 8.
    Fischer, M., V. Halbach, J. Kriener, and J. Stern, Axiomatizing semantic theories of truth? The Review of Symbolic Logic  8(2):257–278, 2015.Google Scholar
  9. 9.
    Halbach, V., Axiomatic Theories of Truth. Revised Edition, Cambridge University Press, Cambridge, 2014.CrossRefGoogle Scholar
  10. 10.
    Halbach, V., and L. Horsten, Axiomatizing Kripke’s theory of truth in partial logic, Journal of Symbolic Logic 71:677–712, 2006.CrossRefGoogle Scholar
  11. 11.
    Hilbert, D., Über das Unendliche, in J. Van Heijenoort (ed.), From Frege to Gödel. A Source Book in Mathematical Logic, Harvard University Press, Cambridge, 1967.Google Scholar
  12. 12.
    Horsten, L., The Tarskian Turn, MIT University Press, Oxford, 2012.Google Scholar
  13. 13.
    Kremer, M., Kripke and the logic of truth, Journal of Philosophical Logic 17:225–278, 1988.CrossRefGoogle Scholar
  14. 14.
    Kripke, S., Outline of a theory of truth, Journal of Philosophy 72:690–712, 1975.CrossRefGoogle Scholar
  15. 15.
    McGee, V., Truth, Vagueness, and Paradox, MIT University Press, Cambridge, 1991.Google Scholar
  16. 16.
    Nicolai, C., M. Fischer, and L. Horsten, Iterated reflection over full disquotational truth (Submitted).
  17. 17.
    Nicolai, C., and V. Halbach. On the costs of nonclassical logic, Journal of Philosophical Logic. doi: 10.1007/s10992-017-9424-3.
  18. 18.
    Pohlers, W., Proof Theory. A First Step into Impredicativity, Springer, Berlin, 2009.Google Scholar
  19. 19.
    Reinhardt, W., Some remarks on extending and interpreting theories with a partial predicate for truth, Journal of Philosophical Logic 15:219–251, 1986.CrossRefGoogle Scholar
  20. 20.
    Schmerl, U. R., Iterated reflection principle and the \(\omega \)-rule, Journal of Symbolic Logic 4:721–733, 1982.CrossRefGoogle Scholar
  21. 21.
    Schwichtenberg, H., Proof theory: some applications of cut-elimination, in J. Barwise (ed.), Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977.Google Scholar
  22. 22.
    Tarski, A., Der Wahrhetisbegriff in den formalisierten Sprachen, in J. H. Woodger (ed.), Logic, Semantics, Metamathematics, Clarendon Press, Oxford, 1956, pp. 152–278.Google Scholar
  23. 23.
    Williamson, T., Semantic paradoxes and abductive methodology, in B. Armour-Garb (ed.), The Relevance of the Liar, Oxford University Press, Oxford, 2017.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Ludwig-Maximilians-Universität München, Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft Munich Center for Mathematical PhilosophyMünchenGermany

Personalised recommendations